• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 14
  • 14
  • 10
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consequences of rainforest conversion to smallholder rubber and oil palm plantations on soil trace gas fluxes from highly weathered soils in Sumatra, Indonesia

Hassler, Evelyn 20 December 2016 (has links)
No description available.
2

Summer CO2 fluxes : A field study from three large lakes in Sweden

Beijer, Martin, Skoglund, Madeleine January 2019 (has links)
Increasing levels of CO2 in the atmosphere is a contributing cause to climate change. To give a better understanding, natural sources of CO2 is as important as anthropogenic sources, such as burning fossil fuels. The current role of large boreal lakes as emitters of CO2 are poorly understood and there is a clear lack of data from different types of systems. The aim of this thesis was to examine CO2 fluxes from Roxen, Glan and Vättern, three large lakes in Sweden. The purpose of the study was also to compare different approaches to get empirical CO2 flux data, and to investigate if there was difference between the lakes and study periods. Floating chambers were used as method with both direct measured fluxes and calculated fluxes. The direct fluxes were measured with sensors equipped inside the chambers. The calculated fluxes were obtained with gas samples from the chambers, water samples and wind speed in k-wind models. The results showed both temporal and spatial variability between the periods and the lakes. The results also showed a difference between the methods, where CO2 fluxes from sensors (direct measurements) ranged from -36 to 152 mmol m-2 d-1 and the calculated fluxes from the CC-model (Cole & Caraco 1998) ranged from –29 to 58 mmol m-2 d-1. / Ökande halter av CO2 i atmosfären är en bidragande faktor till klimatförändringar. För att få en bättre förståelse för de så behövs kunskap om naturliga flöden, inte enbart antropogena källor, som t.ex. förbränning av fossila bränslen som störst fokus kretsar kring. Den nuvarande kunskapsnivån om större nordiska sjöars CO2 utsläpp är begränsad, och det finns en tydlig brist i data från dessa typer av system. Målet med denna uppsats var att utforska CO2 flöden från Roxen, Glan och Vättern, tre stora sjöar i Sverige. Syftet med studien var också att jämföra olika sätt att samla in empiriskt material samt undersöka om det fanns skillnader mellan sjöarna samt de olika studerade perioderna. Flytande kammare användes för att samla in prover som mättes direkt genom en sensor, men de användes också för att ta manuella gasprover som sedan beräknade flödet av CO2 med hjälp av modeller i efterhand. Resultatet visade både på skillnader i tid och rum mellan perioderna och sjöarna. Resultatet visade även att det fanns en skillnad mellan de olika metoderna vi använde oss av, där sensor (direkta mätningar) var mellan -36 to 152 mmol m-2 d-1 och flödesberäkningarna från CC-modellen (Cole & Caraco 1998) var –29 to 58 mmol m-2 d-1.
3

Water Quality Performance And Greenhouse Gas Flux Dynamics From Compost-Amended Bioretention Systems & Potential Trade-Offs Between Phytoremediation And Water Quality Stemming From Compost Amendments

Shrestha, Paliza 01 January 2018 (has links)
Stormwater runoff from existing impervious surfaces needs to be managed to protect downstream waterbodies from hydrologic and water quality impacts associated with development. As urban expansion continues at a rapid pace, increasing impervious cover, and climate change yields more frequent extreme precipitation events, increasing the need for improved stormwater management. Although green infrastructure such as bioretention has been implemented in urban areas for stormwater quality improvements and volume reductions, these systems are seldom monitored to validate their performance. Herein, we evaluate flow attenuation, stormwater quality performance, and nutrient cycling from eight roadside bioretention cells in their third and fourth years of implementation in Burlington, Vermont. Bioretention cells received varying treatments: (1) vegetation with high-diversity (7 species) and low-diversity plant mixes (2 species); (2) proprietary SorbtiveMediaTM (SM) containing iron and aluminum oxide granules to enhance sorption capacity for phosphorus; and (3) enhanced rainfall and runoff (RR) to certain cells (including one with SM treatment) at three levels (15%, 20%, 60% more than their control counterparts), mimicking anticipated precipitation increases from climate change. Bioretention water quality parameters monitored include total suspended solids (TSS), nitrate/nitrite-nitrogen (NOx), ortho-phosphorus (Ortho-P), total nitrogen (TN) and total phosphorus (TP), which were compared among bioretention cells’ inflows and outflows across 121 storms. Simultaneous measurements of flow rates and volumes allowed for evaluation of the cells’ hydraulic performances and estimation of pollutant load and event mean concentration (EMC) removal. We also monitored soil CO2 and N2O fluxes, as they represent a potential nutrient loss pathway from the bioretention cells. We determined C and N stocks in the soil media and vegetation, which are critical design elements of any bioretention, to determine the overall C and N balances in these systems. Significant average reductions in effluent stormwater volumes and peak flows were reported, with 31% of the storms events completely captured. Influent TSS loads and EMCs were well retained by all cells irrespective of treatments, storm characteristics, or seasonality. Nutrient removal was treatment-dependent, where the SM treatments consistently removed P loads and EMCs, and sometimes N as well. The vegetation and RR treatments mostly exported nutrients to the effluent. We attribute observed nutrient exports to the presence of excess compost in the soil filter media. Rainfall depth and peak inflow rate undermined bioretention performance, likely by increasing pollutant mobilization through the filter media. While the bioretention cells were a source of CO2, they varied between being a sink and source of N2O. CO2 fluxes were orders of magnitude higher than N2O fluxes. However, soil C and N, and plant C and N in biomass was seen to largely offset respiratory CO2-C and biochemical N2O-N losses from bioretention soil. The use of compost in bioretention soil media should be reduced or eliminated. If necessary, compost with low P content and high C: N ratio should be considered to minimize nutrients losses via leaching or gas fluxes. In order to understand trade-offs stemming from compost amendments, we conducted a laboratory pot study utilizing switchgrass and various organic soil amendments (e.g., different compost types and coir fiber) to a sandy loam soil contaminated with heavy metals and studied potential nutrient leaching and pollutant uptake. Addition of organic amendments significantly reduced metal bioavailability, and improved switchgrass growth and metal uptake potential. While no differences in soil or plant metal uptake were observed among the amendments, significant differences in nutrient leaching were observed.
4

Carbon and nutrient cycles depending on climate and land use along the elevation gradient of Mount Kilimanjaro

Becker, Joscha Nico 06 July 2017 (has links)
No description available.
5

Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

Shrestha, Paliza 11 September 2013 (has links)
This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina. We measured soil CO₂ efflux (RS) every six weeks from January 2012 to March 2013 in four-year-old monoculture and intercropped stands of loblolly pine and switchgrass. RS is primarily the result of root respiration (RA) and microbial decomposition of organic matter (RH) releasing CO₂ as a by-product and is an important and large part of the global carbon (C) cycle. Accurate estimates of the two components of total soil respiration (RS) are required as they are functionally different processes and vary greatly spatially and temporally with species composition, temperature, moisture, productivity, and management activities. We quantified RA and RH components of RS by using a root exclusion core technique based on root carbohydrate depletion, which eliminates RA within the cores over time. We determined the relationship between RS, RA and RH measurements and roots collected from the cores. We took fresh soil cores in July 2012 to compare root productivity of loblolly pine and switchgrass in monoculture versus the co-culture. Additionally, CH₄ and N₂O fluxes were monitored quarterly using vented static chambers. Pure switchgrass had significantly higher RS rates (July, August, September), root biomass and root length in the top 0-35 cm relative to switchgrass in the co-culture, while loblolly pine with and without switchgrass had no significant changes in RS and roots. Correlations between RA and roots showed significantly positive correlation of RA to grass root biomass (r = 0.37, p ≤ 0.001), fine (r = 0.26, p ≤ 0.05) and medium root surface area (r = 0.20, p ≤ 0.1). The estimated portions of RS attributed to RA in the intercrop stand were 31% and 22% in the summer and fall, respectively. No significant treatment differences were observed in either CH₄ or N₂O flux. Our study indicates a decrease in switchgrass root productivity in the intercropped stand versus the monoculture stand which could account for differences in the observed RS. / Master of Science
6

Alterações nos fluxos de gases do solo e na ciclagem de carbono e nitrogênio após aquecimento do solo em áreas de Mata Atlântica / Changes in soil gas fluxes and the cycling of carbon and nitrogen after heating the soil in areas of Mata Atlantica forest

Martins, Luiz Felipe Borges 01 July 2011 (has links)
O aquecimento global é considerado um dos mais sérios problemas ambientais da atualidade mundial e suas consequências afetam de maneira severa diversos biomas já ameaçados, principalmente em ecossistemas tropicais. O estado de conservação de todos os biomas brasileiros é uma questão de grande preocupação e por esta razão, a Mata Atlântica, um dos ecossistemas florestais que mais sofreu redução em seu vasto domínio, ainda é um bioma extremamente rico em biodiversidade, com altos níveis de endemismo, apesar do intenso desmatamento e fragmentação. Diante de sua importância biogeoquímica, os objetivos principais do presente estudo foram compreender de que maneira o fenômeno de elevação da temperatura global afeta as emissões naturais de gases de efeito estufa (GEE) provenientes do solo e de que modo o acréscimo da temperatura influencia na ciclagem de nutrientes como carbono e nitrogênio. Para isso, o solo foi aquecido artificialmente em 5ºC para se avaliar o comportamento das emissões sob maiores temperaturas. O estudo foi realizado no Parque Estadual da Serra do Mar, no Núcleo Santa Virgínia, onde predomina a formação de Floresta Ombrófila Densa Altimontana. As amostras foram coletadas quatro vezes ao ano em campanhas de 10 dias, durante os meses de setembro e novembro de 2009 e janeiro e agosto de 2010. O sistema de aquecimento funcionou de maneira satisfatória como esperado e o aumento da temperatura ocorreu por radiação térmica de maneira lenta e gradativa. O aumento da temperatura não resultou em diferenças significativas na umidade do solo para os diferentes tratamentos. O aquecimento resultou em um aumento expressivo das emissões de CO2 e N2O, porém não apresentou diferenças para os fluxos de CH4. O aumento do fluxo dos gases pode representar uma tendência da diminuição do estoque (substrato) de carbono disponível no solo ao longo do tempo. A variação de CO2 a curto prazo pode ter sido consequência do aumento da respiração radicular e de heterótrofos presentes na rizosfera. Para o N2O a maior temperatura pode ter intensificado o metabolismo da microbiota desnitrificadora, resultando assim em maiores emissões de N2O para a atmosfera. O consumo de CH4 não apresentou diferenças significativas durante os períodos amostrados. Estudos que manipulam a temperatura do solo permitem um maior conhecimento dos processos envolvidos na emissão de gases pela atividade microbiana, mas infelizmente não permitem uma conclusão precisa a respeito do comportamento do sistema solo-atmosfera por completo devido aos inúmeros fatores que afetam esses processos de maneiras distintas. É preciso aprofundar nossos conhecimentos da dinâmica desses processos para um melhor entendimento de como a futura interação do ciclo global do C responderá às mudanças climáticas, e como será possível antecipar os efeitos negativos dessas interações que ocorrem na natureza, principalmente entre o C e o N do solo e da atmosfera. / The global warming is considered one of the most serious environmental problem of nowadays and its severe consequences affects already threatened biomes, particularly in tropical ecosystems. The conservation status of all biomes is a matter of great concern, and for this reason, the Atlantic forest, one of the most threatened ecosystems of the Planet, is still extremely rich in biodiversity, with high endemic levels, despite the intense deforestation and fragmentation. Given its biogeochemistry importance, the main objectives of this study were to understand how the phenomenon of rising global temperatures affects natural emissions of greenhouse gases (GHG) from soil, and how the warming influences the cycling of nutrients such as carbon and nitrogen. For this, the soil was artificially heated at 5ºC to evaluate the emissions response at higher temperatures. The study was conducted at Serra do Mar State Park Núcleo Sta. Virgínia, were the formation of montane Rain Forest predominates. Gas samples were collected four times a year on 10 days campaigns during the months of September and November 2009 and January and August 2010. The heating system worked satisfactorily as expected and the temperature was increased by thermal radiation in a slow and gradual way. The temperature increase resulted in no significant differences in soil moisture for the different treatments. The higher temperature resulted in a significant increase in emissions of CO2 and N2O, but no difference was noticed to the flows of CH4. The higher emissions of gases may represent a trend of decrease in the pool of readily available carbon in the soil over time. The short-term variation of CO2 may have been a consequence of increased root respiration and heterotrophic microbiota in the rhizosphere. For the N2O results, the temperature may have enhanced the metabolism of denitrifying microbiota, thus resulting in higher emissions of N2O to the atmosphere. The consumption of CH4 showed no significant differences during the studied periods. Studies that manipulate the soil temperature allow a better understanding of the involved processes in the emission of gases by microbial activity, but unfortunately do not allow a precise conclusion about the response of the soilatmosphere system altogether because there are many factors that affects these processes in distinct ways. We need to further improve our knowledge on the dynamics of these processes for a better understanding of how the future interaction between the global carbon cycle responds to climate change, and how we anticipate the negative effects of those interactions that occur in nature, mainly between C and N present in the soil and in the atmosphere
7

Microbial perspectives of the methane cycle in permafrost ecosystems in the Eastern Siberian Arctic : implications for the global methane budget

Wagner, Dirk January 2007 (has links)
The Arctic plays a key role in Earth’s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, the present study concentrates on investigations of microbial controls of methane fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. For this purpose an integrated research strategy was applied, which connects trace gas flux measurements to soil ecological characterisation of permafrost habitats and molecular ecological analyses of microbial populations. Furthermore, methanogenic archaea isolated from Siberian permafrost have been used as potential keystone organisms for studying and assessing life under extreme living conditions. Long-term studies on methane fluxes were carried out since 1998. These studies revealed considerable seasonal and spatial variations of methane emissions for the different landscape units ranging from 0 to 362 mg m-2 d-1. For the overall balance of methane emissions from the entire delta, the first land cover classification based on Landsat images was performed and applied for an upscaling of the methane flux data sets. The regionally weighted mean daily methane emissions of the Lena Delta (10 mg m-2 d-1) are only one fifth of the values calculated for other Arctic tundra environments. The calculated annual methane emission of the Lena Delta amounts to about 0.03 Tg. The low methane emission rates obtained in this study are the result of the used remotely sensed high-resolution data basis, which provides a more realistic estimation of the real methane emissions on a regional scale. Soil temperature and near soil surface atmospheric turbulence were identified as the driving parameters of methane emissions. A flux model based on these variables explained variations of the methane budget corresponding to continuous processes of microbial methane production and oxidation, and gas diffusion through soil and plants reasonably well. The results show that the Lena Delta contributes significantly to the global methane balance because of its extensive wetland areas. The microbiological investigations showed that permafrost soils are colonized by high numbers of microorganisms. The total biomass is comparable to temperate soil ecosystems. Activities of methanogens and methanotrophs differed significantly in their rates and distribution patterns along both the vertical profiles and the different investigated soils. The methane production rates varied between 0.3 and 38.9 nmol h-1 g-1, while the methane oxidation ranged from 0.2 to 7.0 nmol h-1 g-1. Phylogenetic analyses of methanogenic communities revealed a distinct diversity of methanogens affiliated to Methanomicrobiaceae, Methanosarcinaceae and Methanosaetaceae, which partly form four specific permafrost clusters. The results demonstrate the close relationship between methane fluxes and the fundamental microbiological processes in permafrost soils. The microorganisms do not only survive in their extreme habitat but also can be metabolic active under in situ conditions. It was shown that a slight increase of the temperature can lead to a substantial increase in methanogenic activity within perennially frozen deposits. In case of degradation, this would lead to an extensive expansion of the methane deposits with their subsequent impacts on total methane budget. Further studies on the stress response of methanogenic archaea, especially Methanosarcina SMA-21, isolated from Siberian permafrost, revealed an unexpected resistance of the microorganisms against unfavourable living conditions. A better adaptation to environmental stress was observed at 4 °C compared to 28 °C. For the first time it could be demonstrated that methanogenic archaea from terrestrial permafrost even survived simulated Martian conditions. The results show that permafrost methanogens are more resistant than methanogens from non-permafrost environments under Mars-like climate conditions. Microorganisms comparable to methanogens from terrestrial permafrost can be seen as one of the most likely candidates for life on Mars due to their physiological potential and metabolic specificity. / Die Arktis spielt eine Schlüsselrolle im Klimasystem unserer Erde aus zweierlei Gründen. Zum einen wird vorausgesagt, dass die globale Erwärmung in den hohen Breiten am ausgeprägtesten sein wird. Zum anderen ist ein Drittel des globalen Kohlenstoffs in Ökosystemen der nördlichen Breiten gespeichert. Um ein besseres Verständnis der gegenwärtigen und zukünftigen Entwicklung der Kohlenstoffdynamik in klimaempfindlichen Permafrostökosystemen zu erlangen, konzentriert sich die vorliegende Arbeit auf Untersuchungen zur Kontrolle der Methanflüsse durch Mikroorganismen, auf die Aktivität und Struktur der beteiligten Mikroorganismen-gemeinschaften und auf ihre Reaktion auf sich ändernde Umweltbedingungen. Zu diesem Zweck wurde eine integrierte Forschungsstrategie entwickelt, die Spurengasmessungen mit boden- und molekularökologischen Untersuchungen der Mikroorganismengemeinschaften verknüpft. Langzeitmessungen zu den Methanflüssen werden seit 1998 durchgeführt. Diese Untersuchungen zeigten beträchtliche saisonale und räumliche Schwankungen der Methanemissionen auf, die zwischen 0 und 362 mg m-2 d-1 für die untersuchten Landschaftseinheiten schwankten. Für die Bilanzierung der Methanemissionen für das gesamte Delta wurde erstmals eine Klassifikation der unterschiedlichen Landschaftseinheiten anhand von Landsat-Aufnahmen durchgeführt und für eine Hochrechnung der Methandaten genutzt. Die Mittelwerte der regional gewichteten täglichen Methanemissionen des Lenadeltas (10 mg m-2 d-1) sind nur ein Fünftel so hoch wie die berechneten Werte für andere arktische Tundren. Die errechnete jährliche Methanemission des Lenadeltas beträgt demnach ungefähr 0,03 Tg. Die geringen Methanemissionsraten dieser Studie können durch den bisher noch nicht realisierten integrativen Ansatz, der Langzeitmessungen und Landschafts-klassifizierungen beinhaltet, erklärt werden. Bodentemperatur und oberflächennahe atmosphärische Turbulenzen wurden als die antreibenden Größen der Methanfreisetzung identifiziert. Ein Modell, das auf diesen Variablen basiert, erklärt die Veränderungen der Methanflüsse gemäß der dynamischen mikrobiellen Prozesse und der Diffusion von Methan durch den Boden und die Pflanzen zutreffend. Die Ergebnisse zeigen, dass das Lenadelta erheblich zur globalen Methanemission aufgrund seiner weitreichenden Feuchtgebiete beiträgt. Die mikrobiologischen Untersuchungen zeigten, dass Permafrostböden durch eine hohe Anzahl von Mikroorganismen besiedelt wird. Die Gesamtbiomasse ist dabei mit Bodenökosystemen gemäßigter Klimate vergleichbar. Die Stoffwechselaktivitäten von methanogenen Archaeen und methanotrophen Bakterien unterschieden sich erheblich in ihrer Rate und Verteilung im Tiefenprofil sowie zwischen den verschiedenen untersuchten Böden. Die Methanbildungsrate schwankte dabei zwischen 0,3 und 38,9 nmol h-1 g-1, während die Methanoxidation eine Rate von 0,2 bis 7,0 nmol h-1 g-1 aufwies. Phylogenetische Analysen der methanogenen Mikro-organismengemeinschaften zeigten eine ausgeprägte Diversität der methanogenen Archaeen auf. Die Umweltsequenzen bildeten vier spezifische Permafrostcluster aus, die den Gruppen Methanomicrobiaceae, Methanosarcinaceae und Methano-saetaceae zugeordnet werden konnten. Die Ergebnisse zeigen, dass die Methanfreisetzung durch die zugrunde liegenden mikrobiologischen Prozesse im Permafrostboden gesteuert wird. Die beteiligten Mikroorganismen überleben nicht nur in ihrem extremen Habitat, sondern zeigten auch Stoffwechselaktivität unter in-situ-Bedingungen. Ferner konnte gezeigt werden, dass eine geringfügige Zunahme der Temperatur zu einer erheblichen Zunahme der Methanbildungsaktivität in den ständig gefrorenen Permafrostablagerungen führen kann. Im Falle der Permafrostdegradation würde dieses zu einer gesteigerten Freisetzung von Methan führen mit bisher unbekannten Auswirkungen auf das Gesamtbudget der Methanfreistzung aus arktischen Gebieten. Weitere Untersuchungen zur Stresstoleranz von methanogenen Archaeen – insbesondere des neuen Permafrostisolates Methanosarcina SMA-21 - weisen eine unerwartete Widerstandsfähigkeit der Mikroorganismen gegenüber ungünstigen Lebensbedingungen auf. Eine bessere Anpassung an Umweltstress wurde bei 4°C im Vergleich zu 28°C beobachtet. Zum ersten Mal konnte gezeigt werden, dass methanogene Archaeen aus terrestrischem Permafrost unter simulierten Marsbedingungen unbeschadet überleben. Die Ergebnisse zeigen, dass methanogene Archaeen aus Permafrostböden resistenter gegenüber Umweltstress und Marsbedingungen sind als entsprechende Mikroorganismen aus Habitaten, die nicht durch Permafrost gekennzeichnet sind. Mikroorganismen, die den Archaeen aus terrestrischen Permafrosthabitaten ähneln, können als die wahrscheinlichsten Kandidaten für mögliches Leben auf dem Mars angesehen werden.
8

Alterações nos fluxos de gases do solo e na ciclagem de carbono e nitrogênio após aquecimento do solo em áreas de Mata Atlântica / Changes in soil gas fluxes and the cycling of carbon and nitrogen after heating the soil in areas of Mata Atlantica forest

Luiz Felipe Borges Martins 01 July 2011 (has links)
O aquecimento global é considerado um dos mais sérios problemas ambientais da atualidade mundial e suas consequências afetam de maneira severa diversos biomas já ameaçados, principalmente em ecossistemas tropicais. O estado de conservação de todos os biomas brasileiros é uma questão de grande preocupação e por esta razão, a Mata Atlântica, um dos ecossistemas florestais que mais sofreu redução em seu vasto domínio, ainda é um bioma extremamente rico em biodiversidade, com altos níveis de endemismo, apesar do intenso desmatamento e fragmentação. Diante de sua importância biogeoquímica, os objetivos principais do presente estudo foram compreender de que maneira o fenômeno de elevação da temperatura global afeta as emissões naturais de gases de efeito estufa (GEE) provenientes do solo e de que modo o acréscimo da temperatura influencia na ciclagem de nutrientes como carbono e nitrogênio. Para isso, o solo foi aquecido artificialmente em 5ºC para se avaliar o comportamento das emissões sob maiores temperaturas. O estudo foi realizado no Parque Estadual da Serra do Mar, no Núcleo Santa Virgínia, onde predomina a formação de Floresta Ombrófila Densa Altimontana. As amostras foram coletadas quatro vezes ao ano em campanhas de 10 dias, durante os meses de setembro e novembro de 2009 e janeiro e agosto de 2010. O sistema de aquecimento funcionou de maneira satisfatória como esperado e o aumento da temperatura ocorreu por radiação térmica de maneira lenta e gradativa. O aumento da temperatura não resultou em diferenças significativas na umidade do solo para os diferentes tratamentos. O aquecimento resultou em um aumento expressivo das emissões de CO2 e N2O, porém não apresentou diferenças para os fluxos de CH4. O aumento do fluxo dos gases pode representar uma tendência da diminuição do estoque (substrato) de carbono disponível no solo ao longo do tempo. A variação de CO2 a curto prazo pode ter sido consequência do aumento da respiração radicular e de heterótrofos presentes na rizosfera. Para o N2O a maior temperatura pode ter intensificado o metabolismo da microbiota desnitrificadora, resultando assim em maiores emissões de N2O para a atmosfera. O consumo de CH4 não apresentou diferenças significativas durante os períodos amostrados. Estudos que manipulam a temperatura do solo permitem um maior conhecimento dos processos envolvidos na emissão de gases pela atividade microbiana, mas infelizmente não permitem uma conclusão precisa a respeito do comportamento do sistema solo-atmosfera por completo devido aos inúmeros fatores que afetam esses processos de maneiras distintas. É preciso aprofundar nossos conhecimentos da dinâmica desses processos para um melhor entendimento de como a futura interação do ciclo global do C responderá às mudanças climáticas, e como será possível antecipar os efeitos negativos dessas interações que ocorrem na natureza, principalmente entre o C e o N do solo e da atmosfera. / The global warming is considered one of the most serious environmental problem of nowadays and its severe consequences affects already threatened biomes, particularly in tropical ecosystems. The conservation status of all biomes is a matter of great concern, and for this reason, the Atlantic forest, one of the most threatened ecosystems of the Planet, is still extremely rich in biodiversity, with high endemic levels, despite the intense deforestation and fragmentation. Given its biogeochemistry importance, the main objectives of this study were to understand how the phenomenon of rising global temperatures affects natural emissions of greenhouse gases (GHG) from soil, and how the warming influences the cycling of nutrients such as carbon and nitrogen. For this, the soil was artificially heated at 5ºC to evaluate the emissions response at higher temperatures. The study was conducted at Serra do Mar State Park Núcleo Sta. Virgínia, were the formation of montane Rain Forest predominates. Gas samples were collected four times a year on 10 days campaigns during the months of September and November 2009 and January and August 2010. The heating system worked satisfactorily as expected and the temperature was increased by thermal radiation in a slow and gradual way. The temperature increase resulted in no significant differences in soil moisture for the different treatments. The higher temperature resulted in a significant increase in emissions of CO2 and N2O, but no difference was noticed to the flows of CH4. The higher emissions of gases may represent a trend of decrease in the pool of readily available carbon in the soil over time. The short-term variation of CO2 may have been a consequence of increased root respiration and heterotrophic microbiota in the rhizosphere. For the N2O results, the temperature may have enhanced the metabolism of denitrifying microbiota, thus resulting in higher emissions of N2O to the atmosphere. The consumption of CH4 showed no significant differences during the studied periods. Studies that manipulate the soil temperature allow a better understanding of the involved processes in the emission of gases by microbial activity, but unfortunately do not allow a precise conclusion about the response of the soilatmosphere system altogether because there are many factors that affects these processes in distinct ways. We need to further improve our knowledge on the dynamics of these processes for a better understanding of how the future interaction between the global carbon cycle responds to climate change, and how we anticipate the negative effects of those interactions that occur in nature, mainly between C and N present in the soil and in the atmosphere
9

Reúso agrícola em planta forrageira: impacto pela irrigação com efluente tratado de abatedouro no fluxo de gases e na solução do solo / Agricultural reuse in pasture: impact on the flow of gases and soil solution by irrigation with treated effluent from slaughterhouse

Dominical, Luma Danielly 05 October 2018 (has links)
O reúso da água é uma prática amplamente estudada e recomendada por diversos pesquisadores como alternativa viável para suprir as necessidades hídricas e, parte das demandas nutricionais das plantas. No Brasil, esta atividade está em processo de desenvolvimento. Sua implantação está condicionada a especificidades locais, respeitando as legislações dos recursos hídricos, proteção ao meio ambiente e saúde pública. Além de fatores como qualidade do efluente tratado e seleção de culturas a serem irrigadas, faz-se necessário aplicar práticas adequadas de manejo, para conservação das propriedades físico-químicas e biológicas do sistema solo, planta e atmosfera. Diante do exposto, o presente trabalho teve como objetivo a avaliação do comportamento dos íons na solução do solo e no solo, do fluxo de gases do efeito estufa e da produtividade da água da cultura, em um sistema de produção irrigado com efluente de abatedouro tratado por sistema anaeróbio, no cultivo de capim coastcross para feno, em diferentes doses de adubação nitrogenada. O delineamento experimental adotado foi em blocos ao acaso, com cinco tratamentos e quatro repetições, sendo estes: T1 - irrigação com água superficial e adição de 100% de adubação nitrogenada (AN) recomendada; T2, T3, T4 e T5 - irrigação com efluente tratado de abatedouro e adição de 0; 33%; 66% e 100 % de AN, respectivamente. Sendo a AN 50 kg ha-1 corte-1 de nitrogênio, na forma de ureia. O solo foi avaliado quimicamente nas profundidades de 0-0,20 m e 0,20-0,40 m, para os parâmetros de fertilidade e sódio trocável. A solução do solo foi obtida por pasta de saturação para posterior análise dos íons Na+, Mg2+, Ca2+, K+, SO4-, NO2-, NO3- e NH4+. A produtividade da água foi determinada pela relação entre produção de massa seca do capim e lâmina de irrigação mais precipitação pluviométrica. A coleta de gases do solo foi realizada por câmaras estáticas e os gases analisados foram gás carbônico, metano e óxido nitroso, por cromatografia gasosa, para determinação do fluxo de gases do solo. Os dados foram avaliados nas estações inverno-primavera (ano 2017) e verão-outono (ano 2018). Os resultados comprovam o potencial do uso de efluentes tratados de abatedouro na irrigação do capim coastcross, como forma complementar ao tratamento anaeróbio. O manejo adotado concentrou os elementos químicos do solo na camada 0-0,20 m, profundidade efetiva do sistema radicular do capim. O aporte de sais ao solo ocorreu nos tratamentos com efluente, no período inverno-primavera, as precipitações ocorridas no período seguinte (verão) foram suficientes para lixiviar os sais para a camada inferior do solo. A análise de solução do solo comprovou o potencial de lixiviação de nitrogênio na forma de nitrato e nitrito, durante todo o período estudado, principalmente para o tratamento com efluente tratado de abatedouro e 100% da AN. Os tratamentos não influenciaram a produtividade da água. A avaliação do fluxo de gases de efeito estufa do solo comprovou a influência das variáveis climáticas e da umidade do solo, ao longo do tempo. O fluxo de CO2 foi maior na coleta de dezembro/2017, incrementado nos tratamentos com efluente. Considerando a dinâmica de solutos no solo, o potencial do aporte de nutrientes e o teor salino do efluente, assim como o fluxo de gases de efeito estufa do solo, o tratamento com efluente tratado de abatedouro, sem adubação nitrogenada, foi o tratamento mais adequado para as condições de desenvolvido do experimento. / Water reuse is a practice widely studied and recommended by several researchers as a viable alternative to meet water needs and part of the nutritional demands of plants. In Brazil, this activity is in the process of development. Its implementation is conditioned to local specificities, respecting the laws of water resources, protection of the environment and public health. In addition to factors such as the quality of the treated effluent and the selection of crops to be irrigated, it is necessary to apply appropriate management practices for the conservation of the physical-chemical and biological properties of the soil, plant and atmosphere system. In view of the above, the present work had the objective of evaluating the behavior of the ions in soil and soil solution, the greenhouse gas flow and the crop water productivity, in an irrigated production system with treated slaughterhouse effluent by anaerobic system, in the cultivation of coastcross grass for hay, at different doses of nitrogen fertilization. The experimental design was a randomized complete block design, with five treatments and four replications: T1 - irrigation with superficial water and addition of 100% of recommended nitrogen fertilization (AN); T2, T3, T4 and T5 - irrigation with treated effluent from slaughterhouse and addition of 0; 33%; 66% and 100% AN, respectively. Being the AN 50 kg ha-1 cut-1 of nitrogen, in the form of urea. The soil was chemically evaluated at depths of 0-0,20 m and 0,20-0,40 m, for fertility and exchangeable sodium parameters. The solution of the soil was obtained by saturation paste for later analysis of Na+, Mg2+, Ca2+, K+, SO4-, NO2-, NO3- and NH4+ ions. The water productivity was determined by the relation between dry mass production of the grass and irrigation blade plus rainfall. Soil gas collection was performed by static chambers and the gases analyzed were carbon dioxide, methane and nitrous oxides, all by gas chromatography, to determine the flow of soil gases. The data were evaluated in the seasons winter-spring (2017) and summer-autumn (2018). The results confirm the potential of the use of treated effluents from slaughterhouse on coastcross grass irrigation as a complementary form to the anaerobic treatment. The management adopted concentrated the chemical elements of the soil in the layer 0-0,20 m, effective depth of the grass root system. The contribution of salts in the soil occurred in the treatments with effluent, in the winter-spring period, the precipitations occurred in the following period (summer) were sufficient to leach the salts to the lower layer of the soil. The soil solution analysis showed the potential of nitrogen leaching in the form of nitrate and nitrite, during the whole studied period, mainly for treatment with slaughterhouse treated effluent and 100% AN. Treatments did not influence water productivity. The evaluation of the flow of greenhouse gases from the soil proved the influence of climatic variables and soil moisture over time. The CO2 flux was higher in the collection of December / 2017, increased in the treatments with effluent. Considering the dynamics of solutes in the soil, the nutrient supply potential and the saline content of the effluent, as well as the greenhouse gas flow of the soil, treatment with treated effluent from slaughterhouse, without nitrogen fertilization, was the most appropriate treatment for the developed conditions of the experiment.
10

Reúso agrícola em planta forrageira: impacto pela irrigação com efluente tratado de abatedouro no fluxo de gases e na solução do solo / Agricultural reuse in pasture: impact on the flow of gases and soil solution by irrigation with treated effluent from slaughterhouse

Luma Danielly Dominical 05 October 2018 (has links)
O reúso da água é uma prática amplamente estudada e recomendada por diversos pesquisadores como alternativa viável para suprir as necessidades hídricas e, parte das demandas nutricionais das plantas. No Brasil, esta atividade está em processo de desenvolvimento. Sua implantação está condicionada a especificidades locais, respeitando as legislações dos recursos hídricos, proteção ao meio ambiente e saúde pública. Além de fatores como qualidade do efluente tratado e seleção de culturas a serem irrigadas, faz-se necessário aplicar práticas adequadas de manejo, para conservação das propriedades físico-químicas e biológicas do sistema solo, planta e atmosfera. Diante do exposto, o presente trabalho teve como objetivo a avaliação do comportamento dos íons na solução do solo e no solo, do fluxo de gases do efeito estufa e da produtividade da água da cultura, em um sistema de produção irrigado com efluente de abatedouro tratado por sistema anaeróbio, no cultivo de capim coastcross para feno, em diferentes doses de adubação nitrogenada. O delineamento experimental adotado foi em blocos ao acaso, com cinco tratamentos e quatro repetições, sendo estes: T1 - irrigação com água superficial e adição de 100% de adubação nitrogenada (AN) recomendada; T2, T3, T4 e T5 - irrigação com efluente tratado de abatedouro e adição de 0; 33%; 66% e 100 % de AN, respectivamente. Sendo a AN 50 kg ha-1 corte-1 de nitrogênio, na forma de ureia. O solo foi avaliado quimicamente nas profundidades de 0-0,20 m e 0,20-0,40 m, para os parâmetros de fertilidade e sódio trocável. A solução do solo foi obtida por pasta de saturação para posterior análise dos íons Na+, Mg2+, Ca2+, K+, SO4-, NO2-, NO3- e NH4+. A produtividade da água foi determinada pela relação entre produção de massa seca do capim e lâmina de irrigação mais precipitação pluviométrica. A coleta de gases do solo foi realizada por câmaras estáticas e os gases analisados foram gás carbônico, metano e óxido nitroso, por cromatografia gasosa, para determinação do fluxo de gases do solo. Os dados foram avaliados nas estações inverno-primavera (ano 2017) e verão-outono (ano 2018). Os resultados comprovam o potencial do uso de efluentes tratados de abatedouro na irrigação do capim coastcross, como forma complementar ao tratamento anaeróbio. O manejo adotado concentrou os elementos químicos do solo na camada 0-0,20 m, profundidade efetiva do sistema radicular do capim. O aporte de sais ao solo ocorreu nos tratamentos com efluente, no período inverno-primavera, as precipitações ocorridas no período seguinte (verão) foram suficientes para lixiviar os sais para a camada inferior do solo. A análise de solução do solo comprovou o potencial de lixiviação de nitrogênio na forma de nitrato e nitrito, durante todo o período estudado, principalmente para o tratamento com efluente tratado de abatedouro e 100% da AN. Os tratamentos não influenciaram a produtividade da água. A avaliação do fluxo de gases de efeito estufa do solo comprovou a influência das variáveis climáticas e da umidade do solo, ao longo do tempo. O fluxo de CO2 foi maior na coleta de dezembro/2017, incrementado nos tratamentos com efluente. Considerando a dinâmica de solutos no solo, o potencial do aporte de nutrientes e o teor salino do efluente, assim como o fluxo de gases de efeito estufa do solo, o tratamento com efluente tratado de abatedouro, sem adubação nitrogenada, foi o tratamento mais adequado para as condições de desenvolvido do experimento. / Water reuse is a practice widely studied and recommended by several researchers as a viable alternative to meet water needs and part of the nutritional demands of plants. In Brazil, this activity is in the process of development. Its implementation is conditioned to local specificities, respecting the laws of water resources, protection of the environment and public health. In addition to factors such as the quality of the treated effluent and the selection of crops to be irrigated, it is necessary to apply appropriate management practices for the conservation of the physical-chemical and biological properties of the soil, plant and atmosphere system. In view of the above, the present work had the objective of evaluating the behavior of the ions in soil and soil solution, the greenhouse gas flow and the crop water productivity, in an irrigated production system with treated slaughterhouse effluent by anaerobic system, in the cultivation of coastcross grass for hay, at different doses of nitrogen fertilization. The experimental design was a randomized complete block design, with five treatments and four replications: T1 - irrigation with superficial water and addition of 100% of recommended nitrogen fertilization (AN); T2, T3, T4 and T5 - irrigation with treated effluent from slaughterhouse and addition of 0; 33%; 66% and 100% AN, respectively. Being the AN 50 kg ha-1 cut-1 of nitrogen, in the form of urea. The soil was chemically evaluated at depths of 0-0,20 m and 0,20-0,40 m, for fertility and exchangeable sodium parameters. The solution of the soil was obtained by saturation paste for later analysis of Na+, Mg2+, Ca2+, K+, SO4-, NO2-, NO3- and NH4+ ions. The water productivity was determined by the relation between dry mass production of the grass and irrigation blade plus rainfall. Soil gas collection was performed by static chambers and the gases analyzed were carbon dioxide, methane and nitrous oxides, all by gas chromatography, to determine the flow of soil gases. The data were evaluated in the seasons winter-spring (2017) and summer-autumn (2018). The results confirm the potential of the use of treated effluents from slaughterhouse on coastcross grass irrigation as a complementary form to the anaerobic treatment. The management adopted concentrated the chemical elements of the soil in the layer 0-0,20 m, effective depth of the grass root system. The contribution of salts in the soil occurred in the treatments with effluent, in the winter-spring period, the precipitations occurred in the following period (summer) were sufficient to leach the salts to the lower layer of the soil. The soil solution analysis showed the potential of nitrogen leaching in the form of nitrate and nitrite, during the whole studied period, mainly for treatment with slaughterhouse treated effluent and 100% AN. Treatments did not influence water productivity. The evaluation of the flow of greenhouse gases from the soil proved the influence of climatic variables and soil moisture over time. The CO2 flux was higher in the collection of December / 2017, increased in the treatments with effluent. Considering the dynamics of solutes in the soil, the nutrient supply potential and the saline content of the effluent, as well as the greenhouse gas flow of the soil, treatment with treated effluent from slaughterhouse, without nitrogen fertilization, was the most appropriate treatment for the developed conditions of the experiment.

Page generated in 0.0371 seconds