• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 26
  • 16
  • 14
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 166
  • 166
  • 35
  • 24
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Sensing materials based on ionic liquids

Saheb, Amir Hossein 08 July 2008 (has links)
The first chapter of this thesis describes the motivation behind using room temperature ionic liquids (RTILs) in gas sensor research and reviews current applications of RTILs in various sensors. The second chapter describes electrochemical polymerization of aniline in room temperature 1-butyl-3-methylimmidazolium ionic liquids without addition of any acid. It is shown that the polymerization of aniline in BMI(BF4) does require small but controlled amounts of water whereas the polymerization in BMI(PF6) and in BMI(TF2N) does not require any water addition. The third chapter describes the construction of reference electrodes for RTIL applications that have a known and reproducible potential versus the ferrocene/ ferrocenium couple. They are based on reference electrodes of the first kind, Ag/Ag+ couple type, or of the second kind, based on Ag/AgCl in M+Cl-. The stability, reproducibility, and temperature behavior of the two reference systems have been characterized. The fourth chapter describes the electrochemical preparation and spectral analysis of gold clusters by adding gold atoms one-by-one through polyaniline s ability to form a strong complex with chloroaurate at the protonated imine sites. Our results confirm that both the amount and the size of gold clusters affects the properties of the composite material. The fifth chapter describes the development and characterization of a CHEMFET sensing layer based on a composite of CSA-doped polyaniline (PANI), and the room temperature ionic liquid BMI(TF2N) for the sensing of ammonia gas. The work function responses of the cast films with and without IL are analyzed by step-wise changes of ammonia gas concentration from 0.5 to 694 ppm in air as a function of the mole fraction of IL to PANI. The PANI CSA/BMI(TF2N) layers shows enhanced sensitivities, lower detection limit and shorter response times. The final chapter describes the preparation and characterization of field-effect transistors with mixed ionic-electronic conductors that have been created by varying the ratio of room temperature ionic liquid and emeraldine salt of polyaniline. Transistor with high electronic conductivity (32mol% ES-PANI) and Au gate contact exhibited theoretical behavior of an IGFET; whereas, the purely ionic gate behaved irreproducibly, indicating that a capacitive divider has been formed in the gate.
82

Capteur de gaz hyperfréquence à base de nanotubes de carbone, imprimé par technologie jet d’encre / Gas sensor based on carbon nanotubes, printed by inkjet technology

Abdelghani, Aymen 27 November 2018 (has links)
Au cours de ces dernières années, le développement des capteurs de gaz a connu un essor grandissant pour des applications industrielles, militaires et environnementales afin d’assurer la sécurité et la protection contre les gaz nocifs et toxiques. Ces applications demandent des capteurs sensibles, sélectifs, à faible consommation d’énergie et à faible coût. Le travail de thèse présenté dans ce manuscrit, s’inscrit dans ce contexte. Il a pour objectif la réalisation d’un capteur hyperfréquence à base de nanotubes de carbone et fabriqué par technologie jet d’encre. Le principe de fonctionnement du capteur repose sur la caractérisation en fréquence d’un résonateur RF, dont un élément est sensible grâce aux nanotubes de carbone, à la présence d’un gaz environnant. Le manuscrit aborde l’ensemble des étapes nécessaires à la réalisation du capteur, à savoir : la conception des dispositifs de test, s’appuyant sur une étude théorique de leur comportement, la caractérisation des matériaux utilisées, la fabrication sur un substrat flexible par une technique d’impression jet d’encre et enfin la caractérisation du capteur de gaz en termes de comportement en fréquence et de sensibilité en présence de gaz. / In recent years, the development of gas sensors has grown rapidly for industrial, military and environmental applications to ensure safety and protection against harmful and toxic gases. These applications require sensitive, selective, low power and low cost sensors. The thesis work presented in this manuscript fits into this context. Its objective is the realization of a microwave sensor based on carbon nanotubes and manufactured by inkjet technology. The operating principle of the sensor is based on the frequency characterization of an RF resonator, one element of which is sensitive, thanks to the carbon nanotubes, to the presence of a surrounding gas. The manuscript addresses all the steps necessary for the realization of the sensor, namely: the design of the test devices, based on a theoretical study of their behavior, the characterization of the materials used, the fabrication on a flexible substrate by inkjet printing technique and finally the characterization of the gas sensor in terms of frequency behavior and sensitivity in the presence of gas.
83

Síntese e caracterização de filmes finos e espessos de ZnO: aplicação como sensores de gás / Synthesis and characterization of ZnO nanostructures for application as gas sensors

Ariadne Cristina Catto 01 December 2016 (has links)
O desenvolvimento de novos materiais que possam ser aplicados como sensores resistivos de gás torna-se mais importante a cada dia devido sua importância no monitoramento ambiental, controle de emissão industrial e aplicações médicas. Desta forma, esforços têm sido realizados a fim de desenvolver dispositivos funcionais que apresentem uma alta sensibilidade, seletividade e baixo consumo de energia operando em temperaturas próximas a temperatura ambiente. O composto ZnO nanoestruturado puro e/ou dopado exibindo diferentes morfologias têm sido apontado como um candidato promissor na detecção de diferentes tipos de gases devido suas propriedades eletrônicas e da alta razão superfície/volume que facilitam a adsorção de espécies gasosas sobre sua superfície. Adicionalmente, diferentes estudos tem mostrado que o desempenho de sensores resistivos pode ser melhorado através da inserção de dopantes na rede ou na superfície do material sensor. Motivados por essas considerações, neste trabalho, filmes finos e espessos de composição ZnO e Zn1-xCoxO nanoestruturados obtidos através dos métodos dos precursores poliméricos, RF sputtering e tratamento hidrotermal foram avaliados visando sua aplicação como sensor dos gases O3, NO2 e CO. O estudo das propriedades estruturais de longo alcance investigadas através da técnica de difração de raios X mostrou que a adição de cobalto causa uma diminuição da intensidade dos picos de difração. Medidas do espectro de absorção de raios-X indicaram que nas amostras obtidas pelo método dos precursores poliméricos e RF sputtering, respectivamente, os átomos de Co assumem predominantemente o estado de valência 2+ e 3 +. A composição química da superfície das amostras foi analisada através da técnica de espectroscopia de fotoelétrons de raios X (XPS) enquanto as propriedades microestruturais foram avaliadas por microscopia eletrônica de varredura (MEV) e microscopia de força atômica (AFM). Medidas da resistência elétrica das amostras foram utilizadas para avaliar as propriedades sensoras das amostras, como a sensibilidade, a seletividade, o tempo de resposta e de recuperação quando expostos a diferentes concentrações dos gases O3, CO e NO2. As medidas de resistência elétrica quando os filmes foram expostos as estes gases mostrou que as três metodologias de síntese foram eficientes na obtenção de amostras que apresentam um grande potencial para serem aplicadas como sensores de gás. Entretanto, a amostra obtida por RF-sputtering apresentou as melhores propriedades de detecção ao gás ozônio com, valor de resposta quarenta (40) vezes maior, que foi atribuído a sua alta rugosidade e as características microestruturais apresentadas por essa amostra. As amostras Zn1-xCoxO obtidas pelo método dos precursores poliméricos exibiram uma maior sensibilidade ao ozônio e uma menor temperatura de trabalho em relação a amostra ZnO, preparada por esse mesmo método. Além disso, a adição de cobalto contribuiu para a seletividade do composto. A melhora das propriedades sensoras foram atribuídas a uma melhor atividade catalítica causada pelos íons Co e a presença de defeitos na superfie do material, que favoreceu a adsorção das moléculas de oxigênio na superfície da amostra / The development of new materials to be applied as gas resistive sensors has become increasingly important regarding environmental monitoring, industrial emission control and medical applications. Pure or doped ZnO nanostructured compounds that exhibit different morphologies have been identified as promising candidates for the detection of different types of toxic gases due to their electronic properties and high surface/volume ratio, which facilitates the adsorption of gaseous species on their surface. Studies have shown the performance of resistive sensors can be improved by the doping or presence of defects in the network or at the surface of the sensor material. The present doctoral thesis addresses the evaluation of ZnO and Zn1-xCoxO nanostructured films obtained by the polymeric precursor method, RF sputtering deposition and hydrothermal treatment and their application as O3, NO2 and CO gas sensors. Their long-range order structure investigated by the X-ray diffraction technique showed the addition of cobalt decreases the intensity of diffraction peaks. Measurements of X-ray absorption spectra at Co K-edge indicated Co atoms in the samples obtained by the RF sputtering technique and polymeric precursor method predominantly assume the 2+ and 3+ oxidation state. Measurements of electrical resistance were used in the evaluation of ZnO and Zn1-xCoxO nanostructured films sensing properties such as sensitivity, selectivity, response and recovery times under different concentrations of O3, CO and NO2 gases. The electrical resistance of the films exposed to those gases showed the three methodologies of synthesis effectively obtained samples to be applied as gas sensors. However, the sample obtained by the RF-sputtering deposition technique exhibited the best detection properties towards ozone gas and a forty-time higher response value, attributed to greater roughness and microstructural features. Zn1-xCoxO samples obtained by the polymeric precursor method exhibited higher sensitivity and a lower working temperature in relation to ozone gas. Such characteristics were attributed to a better catalytic activity promoted by the addition of Co ions and the presence of defects on the surface of the material, which favors the adsorption of oxygen molecules on the sample surface.
84

Síntese de poli(p-fenilenovinileno)s e desenvolvimento e otimização de um nariz eletrônico / Synthesis of poly(p-phenylenevinylene)s and the development and optimization of an electronic nose.

Elaine Yuka Yamauchi 15 April 2014 (has links)
O presente trabalho envolve a síntese e caracterização de um polímero da família dos poli(p-fenilenovinileno)s (PPV), aplicável em camadas ativas de dispositivos como narizes eletrônicos, muito utilizados em várias áreas, como medicina, meio ambiente e indústria alimentícia. O trabalho visou também ao desenvolvimento de um nariz eletrônico, abrangendo o processo de preparação, o que incluiu a confecção dos eletrodos dos sensores de gases, o estudo referente ao equipamento de aquisição de dados e à comunicação com o microcomputador. Visou-se à otimização do equipamento que já vem sendo utilizado em medidas para várias detecções, estudando-se fatores como frequência da corrente alternada empregada, forma de onda (senoidal, quadrada e triangular), temperatura da amostra e distância entre os dígitos nos eletrodos. Verificou-se a possibilidade da utilização de nariz eletrônico na área de alimentos, estudando-se a identificação de méis de abelha de floradas diferentes e a detecção de fungos em laranjas pós-colheita. / The present thesis involves the synthesis and characterization of a polymer of the poly(p-phenylenevinylene) (PPV) family, applicable as active layer of devices such as gas sensors and electronic noses, which are instruments widely used in several areas, including medicine, environmental sciences and food industry. This work also aimed the full development of an electronic nose, from the making of the electrodes and sensors to the study of the data acquisition and its communication with a personal computer. In order to optimize the equipment, the influence of several factors such as frequency of the applied alternating current, its waveform (sine, square and triangle), temperature of the sample, and spacing between the digits of the electrodes were investigated. Finally, the equipment was used for the identification of honeys from different blossoms and for the detection of fungi in post-harvest oranges.
85

Síntese, caracterização e aplicação de polímeros conjugados derivados de ferroceno e de bisfenol-A / Synthesis, characterization and application of conjugated polymers derived from ferrocene and bisphenol-A

Camila dos Santos Gonçalves 08 February 2008 (has links)
Observando o atual interesse em polímeros organometálicos para diversas aplicações, foi feita a síntese de uma série de polímeros conjugados contendo ferroceno na cadeia principal visando à investigação de suas propriedades, em especial fenômenos magnetorresistivos, magneto-ópticos e de óxido-redução. Os polímeros preparados pelo método de McMurry foram os seguintes: PFV: poli(1,1\'-ferrocenilenovinileno) e PFV-DOPPV-M: poli[1,1\'-ferrocenilenovinileno-alt-(2,5-di-n-octilóxi)-1,4-fenilenovinileno]. Outros dois polímeros foram preparados utilizando o método de polimerização de Wittig, o PFV-DOPPV-W: poli[1,1\'-ferrocenilenovinileno-alt-(2,5-di-n-octilóxi)-1,4-fenilenovinileno] e o PFV-DMPPV: poli[1,1\'-ferrocenileno-vinileno-alt-(2,5-dimetóxi)-1,4-fenilenovinileno]. A síntese de polímeros contendo segmentos π-conjugados equenos e bem definidos separados por segmentos não-conjugados é uma das melhores stratégias para a obtenção de polímeros emissores de luz azul. Com base nesse argumento foi feita a síntese de uma série de polímeros contendo um derivado metoxilado de bisfenol-A (BPA) na cadeia principal, alternando-se com unidades de PPV ou PFV que apresentam segmentos conjugados bem definidos. Os polímeros preparados foram os seguintes: BPA-DOPPV:poli[2,2-bis(4-metoxifenil)-propano-alt-2,5-(di-n-octilóxi)-1,4-divinilbenzeno]; BPA-PPV: poli[2,2-bis(4-metoxifenil)-propano-alt-1,4-ivinilbenzeno]; BPA-DMPPV: poli[2,2-bis(4-metoxifenil)-propano-alt-2,5-dimetóxi-1,4-ivinilbenzeno]; BPA-DBPPV: poli[2,2-bis(4-metoxifenil)-propano-alt-2,5-dibromo-1,4-divinilbenzeno] e BPA-PFV: poli[2,2-bis(4-metoxifenil)-propano-alt-1,1\'-divinil-ferroceno]. Todos os polímeros obtidos foram caracterizados por métodos espectroscópicos (UV-VIS, IR, RMN), análises térmicas, SEC, entre outras. Algumas aplicações foram estudadas para esses polímeros, tais como a construção de um eletrodo de ORP modificado, a produção de diodos orgânicos emissores de luz (OLEDs) e a determinação da resposta \"olfativa\" de sensores de gases. / Owing to the current interest in organometallic polymers and their applications, a group of conducting polymers containing ferrocene in the main chain was synthesized aiming the study of their magnetoresistive, magneto-optic and redox properties. The following polymers were prepared via McMurry method: poly(1,1\'-ferrocenylenevinylene) (PFV) and poly[1,1\'-ferrocenylenevinylene-alt-(2,5-di-n-octiloxy)-1,4-phenylenevinylene] (PFV-DOPPV-M). Two other polymers were synthesized via Wittig method: poly[1,1\'-ferrocenylenevinylene-alt-(2,5-di-n-octiloxy)-1,4-phenylenevinylene] (PFV-DOPPV-W) and poly[1,1\'-ferrocenylene-vinylene-alt-(2,5-dimethoxy)-1,4-phenylenevinylene] (PFV-DMPPV). The synthesis of polymers with well-defined small π-conjugated segments separated by non-conjugated segments is one of the best strategies to obtain blue light emitting polymers. Based on this statement the synthesis of several polymers formed by methoxylated bisphenol-A (BPA) alternated with PPV or PFV units was performed. The prepared polymers were the following: poly[2,2-bis(4-methoxyphenyl)-propane-alt-2,5-(di-n-octiloxy)-1,4-divinylbenzene] (BPA-DOPPV), poly [2,2-bis(4-methoxyphenyl)-propane-alt-1,4-divinylbenzene] (BPA-PPV), poly[2,2-bis(4-methoxyphenyl)-propane-alt-2,5-dimethoxy-1,4-divinylbenzene] (BPA-DMPPV), poly[2,2-bis(4-methoxyphenyl)-propane-alt-2,5-dibromo-1,4-divinylbenzene] (BPA-DBPPV) and poly[2,2-bis(4-methoxyphenyl)-propane-alt-1,1\'-divinylferrocene] (BPA-PFV). All the synthesized polymers were characterized by spectroscopic methods (UV/VIS, IR, NMR), thermal analysis, SEC, among others. Some applications to these polymers were studied: a modified ORP electrode, organic light emitting devices (OLEDs) and gas sensors.
86

Síntese de poli(p-fenilenovinileno)s alcoxilados e sua aplicação em diodos emissores de luz e em sensores de gases / Synthesis of alkoxylated poly(p-phenylenevinylene)s and their application in light emitting diodes and in gas sensors

Elaine Yuka Yamauchi 05 December 2006 (has links)
O presente trabalho envolveu a eletrossíntese de três polímeros da família dos poli(p-fenilenovinileno)s, PPVs, apresentando como substituintes grupos alcóxi de cadeia longa. Esses polímeros foram caracterizados espectroscopicamente (RMN de 1H, IV e UV/VIS), termicamente (TG), por cromatografia por exclusão de tamanho (SEC), eletronicamente por voltametria cíclica e eletricamente por meio de curvas I x V em dispositivos do tipo sanduíche (metal/polímero/metal). Os polímeros foram utilizados na construção de sensores de gases para avaliação da capacidade sensitiva a vapores orgânicos, mostrando-se promissores para utilização em narizes eletrônicos. Construíram-se, também, dispositivos emissores de luz orgânicos (OLEDs) com utilização desses polímeros como camada ativa, no intuito de se conhecer sua aplicabilidade em dispositivos optoeletrônicos. Para tal, foram feitas determinações de luminância e de eficiência quântica de luminância dos OLEDs construídos. Os dispositivos do tipo sanduíche, os OLEDs e as medidas correspondentes foram realizados em Curitiba, em colaboração com o Prof. Dr. Ivo Alexandre Hümmelgen, líder do Grupo de Dispositivos Optoeletrônicos Orgânicos do Departamento de Física da Universidade Federal do Paraná. / The present work describes the electrosynthesis of three polymers of the poly(p-phenylenevinylene) (PPV) family, having at least one long chain alkoxy group as substituent. These polymers were characterized by spectroscopic analyses (1H NMR, IR and UV-Vis), thermogravimetry (TG), size exclusion chromatography (SEC), cyclic voltammetry and electrically by current vs. potential plots obtained from metal/polymer/metal sandwich devices. The polymers were tested as active layers in gas sensors for organic vapour analyses aimed for future use in electronic noses. The same polymers were also employed in organic light emitting diodes (OLEDs) in which the luminance and the luminance quantum efficiency were measured. Both the sandwich devices and the OLEDs were made in Curitiba with the collaboration of Prof. Ivo Hümmelgen, head of the Group of Organic Optoelectronic Devices at the Physics Department of the Federal University of Paraná (UFPR).
87

Etude, modélisation et conception d'un multicapteur chimique à base de CNTFET / Study, modeling and design of chemical multisensor based on CNTFET (Carbon NanoTube Field-Effect Transistor)

Heitz, Jérôme 19 September 2013 (has links)
Depuis quelques années, les explosifs artisanaux à base de peroxyde sont fréquemment utilisés dans les actes de terrorisme. Leur simplicité de conception ne les rend pas moins inoffensifs car ils sont tout aussi puissants que ceux à base de TNT (trinitrotoluène). Au regard des enjeux majeurs de la sécurité globale et en particulier de la protection du citoyen, il devient nécessaire de bénéficier d'instruments de détection fiables. C'est dans ce cadre que s'inscrit ce travail de thèse qui vise à développer un capteur intégré, sensible et sélectif aux traces d'explosifs, notamment ceux à base de peroxyde. Ce nez électronique est constitué d'une matrice de transistors à nanotubes de carbone (CNTFET) et d'une électronique et traitement des données. Après une brève introduction relative aux CNTFET pour la détection gazeuse, nous présentons les bases de l'élaboration d'une modélisation électrique du capteur. Cette modélisation a pour but, à terme, de permettre aux concepteurs decircuits intégrés de bénéficier d'un support de simulation des CNTFET, nécessaire à la mise en oeuvre de l'électronique de contrôle et de conditionnement des signaux. Nous détaillerons également ce qui constitue selon nous l'étape fondamentale précédant l'élaboration d'un modèle compact prédictif basé sur la physique, c'est à dire la compréhension topologique du réseau de nanotubes. Nous détaillerons alors différentes probabilités de contacts entre nanotubes. Nous présentons ensuite,l'élaboration de l'électronique permettant le contrôle des potentiels appliqués aux CNTFET et le conditionnement des signaux électriques. Ce conditionnement a pour objectif d'acheminer les réponses électriques du capteur vers des architectures de traitement de données utilisées pour la détection des différents gaz cibles. L'électronique intégrée en technologie CMOS HV (haute tension) est alimentée par pile basse tension. Des pompes de charge, élévateurs de tension, générant ces hautes tensions ont été étudiées, modélisées et réalisées. Nous proposons également dans ce manuscrit une nouvelle architecture de pompe de charge qui constitue, dans certaines plages d'utilisation, une alternative intéressante aux pompes de charge les plus performantes utilisées jusqu'à présent. / For the last few years, improvised peroxide based explosives are frequently used in acts of terrorism. Their simple design does not make them less threatening than those based on TNT because they are equally as powerful as those based on TNT (trinitrotoluene). In view of the major issues of the overall safety and, in particular, the citizens' protection, it becomes necessary to enjoy reliable detection instruments. Such is the background of this PhD work which aims to develop a built-in sensor,sensitive and selective to traces of explosives, especially those based on peroxide. This electronic nose is made up of a network of carbon nanotube field-effect transistors (CNTFET), and data processing hardware. After a brief introduction relating to CNTFETs for gaseous detection, we will provide the basis for the elaboration of an electronic modeling of the sensor. This modeling aims, at the end, to allow designers of integrated circuits to benefit from a simulation support of CNTFETs, required to the implementation of control and signal conditioning electronics. We will also detail what are the fundamental steps mandatory before the development of a predictive compact model based on physics, which means the topological understanding of the nanotubes network. Then, we will describe different probabilities of contacts between nanotubes. Later, we will introduce the elaboration of the electronics allowing the control of the voltages applied to the CNTFETs and the electrical signals conditioning. The objective of this conditioning is to carry electrical responses from the sensor to data processing architectures used for the detection of the different target gasses. High Voltage CMOS integrated electronics are powered by low-voltage batteries. Charge pumps and voltage boosters which generate these high voltages, have been investigated, modeled and carried out. We also provide in this dissertation a new charge pump architecture which offers, in some ranges of application, an interesting alternative to the most efficient charge pumps used until now.
88

A PORTABLE SENSOR FOR MEASURING GAS EMISSIONS FROM DAIRY COMPOST BEDDED PACK BARNS

Wolf, Katharine 01 January 2017 (has links)
The objective of this study was to develop a gas measurement chamber for the comparison of emissions from different dairy manure storage facilities. Compost bedded pack (CBP) barns are a loose housing system in which cows rest on an intensely managed compost pack. Sawdust is the primary material added to the system, along with manure and urine inputs from the cows, and the pack is stirred one to two times daily. Maintaining a high level of aerobic microbial activity in the pack is critical for cow health. Previous dairy emissions work has not included compost bedded pack barns; it was expected that the largely aerobic system would have a different emissions profile than other manure storage systems. A measurement chamber was developed to determine emission fluxes from the compost bedded pack barn surface. Infrared and electrochemical sensors measuring ammonia, methane, and carbon dioxide obtain headspace gas concentrations, temperature, and humidity each second. The relatively lower cost of each chamber, as compared to photoacoustic and gas chromatography systems, will allow a greater number to be deployed to more accurately represent the spatial variation within the system.
89

Electrical Impedance Spectroscopic Studies On Bread Staling : Sensors And Instrumentation

Bhatt, Chintan M 06 1900 (has links) (PDF)
Quality control is essential in food industry and efficient quality assurance is becoming increasingly important. The assessment of food quality still centers on its sensory properties (appearance, aroma and texture). Bread is one of the most consumed food item all over the world. Bakery product manufacturers expect that the bread should retain all of its attributes during storage and consumers expect their bread to be ‘fresh’. Unfortunately, it remains truly ‘fresh’ for only a few hours after it leaves the oven because the ingredients of the bread undergo series of physical and chemical changes that eventually lead to deterioration, referred as “staling”, of bread quality. Bread staling is classified in two categories: crust (outer portion of bread) staling and crumb (center portion of bread) staling. Crust staling is associated to the moisture migration from crumb to crust during storage. This moisture migration leads to a phenomenon called glass transition at crust. This phenomenon changes the mechanical and dielectric properties of bread crust. Crumb staling is mainly associated to the physicochemical changes in starch. During storage, amorphous starch regains its crystallinity, which increases the firmnesss and dryness of bread crumb. Thus, the knowledge of moisture content, starch recrystallization and the glass transition helps in understanding the bread staling mechanism. There are some volatiles produced from the bread during storage, which forms the characteristic flavor or aroma of the bread. The loss of this characteristic flavor during storage also gives the information about the loss of freshness and staling. Thus, there is a need for detection and monitoring the loss of these volatiles to determine the characteristic flavor during storage. Hence, the present investigations are focused on these issues and developed a measurement facility to monitor the above physicochemical changes in bread during storage. As a part of experimental investigations, two separate test facilities have been developed. A multichannel ring electrodes with suitable instrumentation based on impedance spectroscopy technique is developed for simultaneous measurement of electrical properties of bread at crust and crumb during storage in the frequency range from 50 Hz to 100 kHz. The detailed investigations have been conducted on wheat bread. The variation in capacitance showed that the glass transition phenomenon, at room temperature, in bread crust occurs after 96 h of storage with 18% of moisture in it. The resistance changes at bread crumb showed the starch recrystallization during staling. The electrical property results are justified with the results obtained from the conventional differential scanning calorimmetery (DSC) studies. The impedance measurement at crust and crumb estimates the moisture content at the respective zones of bread. Thus the test facility is used for the simultaneous measurement of moisture content, starch recrystallization and glass transition at crumb and crust respectively without destructing the bread loaf. A few experiments are conducted on maida bread and the obtained results are compared with the wheat bread results. Another test facility has been developed for the detection of volatiles produced from the wheat bread during storage. The gas chromatography and mass spectroscopy (GC-MS) experimentations are conducted to identify the volatiles produced from the bread during storage. The major volatiles produced from wheat bread are found to be 1-Heptanol, 1-Pentanol, 1-Octanol, Furan and Hydroperoxyde. A conducting polymer based gas sensor is designed and developed to sense these volatiles and the changes in its electrical property is monitored with a suitable instrumentation based on impedance spectroscopy technique in the frequency range from 10 Hz to 2MHz. Experimental investigations are carried out in an in-house air tight closed test chamber. The bread sample and the designed sensor are kept inside the test chamber and closed tightly so that only bread volatile can interact with the sensor. The sensor response is monitored by measuring the changes in its capacitance upon exposure to organic volatiles produced from bread during storage. It is observed that the capacitance of the sensor changes with the quantitative changes of the above volatiles. Thus, the test facility is found quite suitable for the detection and monitoring the bread volatiles produced during storage, which finally affects the aroma property. Thus, the developed experimental test facilities with suitable sensors and instrumentation based on impedance spectroscopy technique are found quite suitable to monitor the changes in physicochemical properties and aroma of bread during storage. The correlation between the measured electrical properties and the changes in the textural and flavor properties of bread during storage has been established. The results obtained with the developed test facilities are in good agreement with the results obtained from the standard traditional techniques like DSC and GC-MS.
90

Thin films for indoor air monitoring : Measurements of Volatile Organic Compounds

Cindemir, Umut January 2016 (has links)
Volatile organic compounds (VOCs) in the indoor air have adverse effects on the dwellers residing in a building or a vehicle. One of these effects is called sick building syndrome (SBS). SBS refers to situations in which the users of a building develop acute health effects and discomfort depending on the time they spend inside some buildings without having any specific illness. Furthermore, monitoring volatile organic compounds could lead to early diagnosis of specific illnesses through breath analysis. Among those VOCs formaldehyde, acetaldehyde can be listed. In this thesis, VOC detecting thin film sensors have been investigated. Such sensors have been manufactured using semiconducting metal oxides, ligand activated gold nanoparticles and Graphene/TiO2 mixtures. Advanced gas deposition unit, have been used to produce NiO thin films and Au nanoparticles. DC magnetron sputtering has been used to produce InSnO and VO2 thin film sensors. Graphene/TiO2 sensors have been manufactured using doctor-blading. While presenting the results, first, material characterization details are presented for each sensor, then, gas sensing results are presented. Morphologies, crystalline structures and chemical properties have been analyzed using scanning electron microscopy, X-ray diffraction and X-ray photo electron spectroscopy. Furthermore, more detailed analyses have been performed on NiO samples using extended X-ray absorption fine structure method and N2 adsorption measurements. Gas sensing measurements were focused on monitoring formaldehyde and acetaldehyde. However, responses ethanol and methane were measured in some cases to monitor selectivity. Graphene/TiO2 samples were used to monitor NO2 and NH3. For NiO thin film sensors and Au nano particles, fluctuation enhanced gas sensing is also presented in addition to conductometric measurements.

Page generated in 0.0786 seconds