• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 10
  • Tagged with
  • 84
  • 84
  • 84
  • 28
  • 27
  • 21
  • 20
  • 20
  • 14
  • 12
  • 11
  • 11
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

High temperature proton-exchange and fuel processing membranes for fuel cells and other applications

Bai, He. January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008.
72

Shear-induced microstructure in hollow fiber membrane dopes

Peterson, Emily Cassidy 13 January 2014 (has links)
Hollow fiber membranes offer the opportunity to dramatically reduce the energy required to perform gas separations in the chemical industry. The membranes are fabricated from highly non-Newtonian precursor materials, including concentrated polymer solutions that sometimes also contain dispersed particles. These materials are susceptible to shear-induced microstructural changes during processing, which can affect the characteristics of the resulting membrane. This thesis explores several shear-related effects using materials and flow conditions that are relevant for fiber spinning. The findings are discussed as they relate to membrane processing, and also from the standpoint of enhancing our fundamental understanding of the underlying phenomena. First, the effect of shear on polymeric dope solutions was investigated. Shear-induced demixing—a phenomenon not previously studied in membrane materials—was found to occur in membrane dopes. Phase separation experiments also showed that shear-induced demixing promotes macrovoid formation. The demixing process was found to depend not only on the instantaneous shear conditions, but also on the shear history of the solution. This suggests that low-shear flow processes that occur in the upstream tubing and channels used for fiber spinning can affect macrovoid formation. The effect of viscoelastic media on dispersed particles was also explored. Shear-small-angle light scattering results showed that particles suspended in membrane dope solutions formed aggregated, vorticity-oriented structures when shear rates in the shear-thinning regime of the polymer solution were applied. Shear rates well below the shear-thinning regime did not produce any structure. In fact, the application of a Newtonian shear rate to a sample already containing the vorticity structure caused the sample to return to isotropy. Measurements using a highly elastic, constant-viscosity Boger fluid showed that strong normal forces alone are not sufficient to form the vorticity structures, but that shear thinning is also required. Lastly, a study was conducted examining cross-stream migration of particles dispersed in viscoelastic media. Fluids exhibiting varying degrees of shear thinning and normal forces were found to have different effects on the particle distribution along the shear gradient axis in Poiseuille flow. Shear thinning was found to promote migration toward the channel center, while normal stresses tended to cause migration toward the channel walls. In addition to hollow fiber spinning, many other industrially relevant applications involve polymer solutions and suspensions of particles in viscoelastic media. Often, the properties and performance of the material depend strongly on the internal microstructure. The results from the research described in this thesis can be used to guide the design of materials and processing conditions, so that the desired microstructural characteristics can be achieved.
73

PEBAX-based mixed matrix membranes for post-combustion carbon capture

Bryan, Nicholas James January 2018 (has links)
Polymeric membranes exhibit a trade-off between permeability and selectivity in gas separations which limits their viability as an economically feasible post-combustion carbon capture technology. One approach to improve the separation properties of polymeric membranes is the inclusion of particulate materials into the polymer matrix to create what are known as mixed matrix membranes (MMMs). By combining the polymer and particulate phases, beneficial properties of both can be seen in the resulting composite material. One of the most notable challenges in producing mixed matrix membranes is in the formation of performance-hindering defects at the polymer-filler interface. Non-selective voids or polymer chain rigidification are but two non-desirable effects which can be observed. The material selection and synthesis route are key to minimising these defects. Thin membranes are also highly desirable to achieve greater gas fluxes and improved economical separation processes. Hence smaller nano-sized particles are of particular interest to minimise the disruption to the polymer matrix. This is a challenge due to the tendency of some small particles to form agglomerations. This work involved introducing novel nanoscale filler particles into PEBAX MH1657, a commercially available block-copolymer consisting of poly(ethylene oxide) and nylon 6 chains. Poly(ether-b-amide) materials possess an inherently high selectivity for the CO2/N2 separation due to polar groups in the PEO chain but suffer from low permeabilities. Mixed matrix membranes were fabricated with PEBAX MH1657 primarily using two filler particles, nanoscale ZIF-8 and novel nanoscale MCM-41 hollow spheres. This work primarily investigated the effects of the filler loading on both the morphology and gas transport properties of the composite materials. The internal structure of the membranes was examined using scanning electron microscopy (SEM), and the gas transport properties determined using a bespoke time-lag gas permeation apparatus. ZIF-8 is a zeolitic imidazolate framework which possesses small pore windows that may favour CO2 transport over that of N2. ZIF-8-PEBAX membranes were successfully synthesised up to 7wt.%. It was found that for filler loadings below 5wt.%, the ZIF-8 was well dispersed within the polymer phase. At these loadings modest increases in the CO2 permeability coeffcient of 0-20% compared to neat PEBAX were observed. Above this 5wt.% loading large increases in both CO2, N2 and He permeability coeffcients coincided with the presence of large micron size clusters formed of hundreds of filler ZIF-8 particles. The increases in permeability were attributed to voids observed within the clusters. MCM-41 is a metal organic framework that has seen notable interest in the field of carbon capture, due to its tunable pore size and ease of functionalisation. Two types of novel MCM-41 hollow sphere (MCM-41-HS) of varying pore size were incorporated into PEBAX and successfully used to fabricate MMMs up to 10wt.%. SEM showed the MCM-41 generally interacted well with the polymer with no signs of voids and was generally well dispersed. However, some samples of intermediate loading in both cases showed highly asymmetric distribution of nanoparticles and high particle density regions near one external face of the membrane which also showed the highest CO2 permeability coeffcients. It is suspected that these high permeabilities are due to the close proximity of nanoparticles permitting these regions to act in a similar way to percolating networks. It was determined that there was no observable effect of the varying pore size which was expected given the transport in the pores should be governed by Knudsen diffusion.
74

Development and evaluation of aromatic polyamide-imide membranes for H₂S and CO₂ separations from natural gas

Vaughn, Justin 15 March 2013 (has links)
Over the past decade, membrane based gas separations have gained traction in industry as an attractive alternative to traditional thermally based separations due to their potential to offer lower operational and capital expenditures, greater ease of operation and lower environmental impact. As membrane research evolves, new state-of-the-art membrane materials as well as processes utilizing membranes will likely be developed. Therefore, their incorporation into existing thermally based units as a debottlenecking step or as a stand-alone separation unit is expected to become increasingly more common. Specifically for natural gas, utilization of smaller, more remote natural gas wells will require the use of less equipment intensive and more flexible separation technologies, which precludes the use of traditional, more capital and equipment intensive thermally based units. The use of membranes is, however, not without challenges. Perhaps the most important hurdle to overcome in membrane development for natural gas purification is the ability to maintain high efficiency in the presence of harsh feed components such as CO₂ and H₂S, both of which can swell and plasticize polymer membranes. Additionally, as this project demonstrates, achievement of similarly high selectivity for both CO₂ and H₂S is challenged by the different governing factors that control their transport through polymeric membranes. However, as others have suggested and shown, as well as what is demonstrated in this project, when CO₂ is the primary contaminant of interest, maintaining high CO₂/CH₄ efficiency appears to be more important in relation to product loss in the downstream. This work focuses on a class of fluorinated, glassy polyamide-imides which show high plasticization resistance without the need for covalent crosslinking. Membranes formed from various polyamide-imide materials show high mixed gas selectivities with adequate productivities when subjected to feed conditions that more closely resemble those that may be encountered in a real natural gas well. The results of this project highlight the polyamide-imide family as a promising platform for future membrane material development for materials aimed at aggressive natural gas purifications due to their ability to maintain high selectivities under aggressive feed conditions without the need for extensive stabilization methods.
75

Engineering nanoporous materials for application in gas separation membranes

Bae, Tae-Hyun 11 August 2010 (has links)
The main theme of this dissertation is to engineer nanoporous materials and nanostructured surfaces for applications in gas separation membranes. Tunable methods have been developed to create inorganic hydroxide nanostructures on zeolite surfaces, and used to control the inorganic/polymer interfacial morphology in zeolite/polymer composite membranes. The study of the structure-property relationships in this material system showed that appropriate tuning of the surface modification methods leads to quite promising structural and permeation properties of the membranes made with the modified zeolites. First, a facile solvothermal deposition process was developed to prepare roughened inorganic nanostructures on zeolite pure silica MFI crystal surfaces. The functionalized zeolite crystals resulted in high-quality ̒mixed matrix̕ membranes, wherein the zeolite crystals were well-adhered to the polymeric matrix. Substantially enhanced gas separation characteristics were observed in mixed matrix membranes containing solvothermally modified MFI crystals. Gas permeation measurements on membranes containing nonporous uncalcined MFI revealed that the performance enhancements were due to significantly enhanced MFI-polymer adhesion and distribution of the MFI crystals. Solvothermal deposition of inorganic nanostructures was successfully applied to aluminosilicate LTA surfaces. Solvothermal treatment of LTA was tuned to deposit smaller/finer Mg(OH)₂ nanostructures, resulting in a more highly roughened zeolite surface. Characterization of particles and mixed matrix membranes revealed that the solvothermally surface-treated LTA particles were promising for application in mixed matrix membranes. Zeolite LTA materials with highly roughened surfaces were also successfully prepared by a new method: the ion-exchange-induced growth of Mg(OH)₂ nanostructures using the zeolite as the source of the Mg²⁺ ions. The size/shape of the inorganic nanostructures was tuned by adjusting several parameters such as the pH of the reagent solution and the amount of magnesium in the substrates and systematic modification of reaction conditions allowed generation of a good candidate for application in mixed matrix membranes. Zeolite/polymer adhesion properties in mixed matrix membranes were improved after the surface treatment compared to the untreated bare LTA. Surface modified zeolite 5A/6FDA-DAM mixed matrix membranes showed significant enhancement in CO₂ permeability with slight increases in CO₂/CH₄ selectivity as compared to the pure polymer membrane. The CO₂/CH₄ selectivity of the membrane containing surface treated zeolite 5A was much higher than that of membrane with untreated zeolite 5A. In addition, the use of metal organic framework (MOF) materials has been explored in mixed matrix membrane applications. ZIF-90 crystals with submicron and 2-μm sizes were successfully synthesized by a nonsolvent induced crystallization technique. Structural investigation revealed that the ZIF-90 particles synthesized by this method had high crystallinity, microporosity and thermal stability. The ZIF-90 particles showed good adhesion with polymers in mixed matrix membranes without any compatibilization. A significant increase in CO₂ permeability was observed without sacrificing CO₂/CH₄ selectivity when Ultem® and Matrimd® were used as the polymer matrix. In contrast, mixed matrix membranes with the highly permeable polymer 6FDA-DAM showed substantial enhancement in both permeability and selectivity, as the transport properties of the two phases were more closely matched.
76

Development of next generation mixed matrix hollow fiber membranes for butane isomer separation

Liu, Junqiang 13 October 2010 (has links)
Mixed matrix hollow fiber membranes maintain the ease of processing polymers while enhancing the separation performance of the pure polymer due to inclusion of molecular sieve filler particles. This work shows the development process of high loading mixed matrix hollow fiber membranes for butane isomer separation, from material selection and engineering of polymer-sieve interfacial adhesion to mixed matrix hollow fiber spinning. The matching of gas transport properties in polymer and zeolite is critical for forming successful mixed matrix membranes. The nC4 permeability in glassy commercial polymers such as Ultem® and Matrimid® is too low (< 0.1 Barrer) for commercial application. A group of fluorinated (6FDA) polyimides, with high nC4 permeability and nC4/iC4 selectivity, are selected as the polymer matrix. No glassy polymers can possibly match the high permeable MFI to make mixed matrix membranes with selectivity enhancement for C4s separation. Zeolite 5A, which has a nC4 permeability (~3 Barrer) and nC4/iC4 selectivity (essentially ∞), matches well with the 6FDA polymers. A 24% nC4/iC4 selectivity enhancement was achieved in mixed matrix membranes containing 6FDA-DAM and 25 wt% treated 5A particles. A more promising mixed matrix membrane contains 6FDA-DAM-DABA matrix and 5A, because of a better match of gas transport properties in polymer and zeolite. Dual layer hollow fibers, with cellulose acetate core layer and sheath layers of 6FDA polyimides, were successfully fabricated. Successive engineering of the 6FDA sheath layer and the dense skin is needed for the challenging C4s separation, which is extremely sensitive to the integrity of the dense skin layer. The delamination-free, macrovoid-free dual layer hollow fiber membranes provide the solution for the expensive 6FDA polyimides spinning. Mixed matrix hollow fiber membranes are spun base on the platform of 6FDA/Cellulose acetate dual layer hollow fibers. Preliminary results suggest that high loading mixed matrix hollow fiber membranes for C4s is feasible. Following research is needed on the fiber spinning with well treated zeolite 5A nanoparticles. The key aspect of this research is elucidating the three-step (sol-gel-precipitation) mechanism of sol-gel-Grignard treatment, based on which further controlling of Mg(OH)2 whisker morphologies is possible. A Mg(OH)2 nucleation process promoted by acid species is proposed to explain the heterogeneous Mg(OH)2 growing process. Different acid species were tried: 1) HCl solution, 2) AlClx species generated by dealumination process and 3) AlCl3 supported on zeolite surfaces. Acids introduced through HCl solution and dealumination are effective on commercial 5A particles to generate Mg(OH)2 whiskers in the sol-gel-Grignard treatment. Supported AlCl3 is effective on both commercial and synthesized 5A particles (150 nm-1 µm) during the sol-gel-Grignard treatment, in terms of promoting heterogeneous Mg(OH)2 whiskers formation. But the byproduct of Al(OH)3 layer separates the Mg(OH)2 whiskers from zeolite surface, and leads to undesirable morphologies for polymer-zeolite interfacial adhesion. The elucidation of sol-gel-Grignard mechanism and importance of zeolite surface acidity on Mg(OH)2 formation, builds a solid foundation for future development towards ''universal'' method of growing Mg(OH)2 whiskers on zeolite surfaces.
77

Membranes via particle assisted wetting

Marczewski, Dawid 24 July 2009 (has links) (PDF)
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the formation of composite layers in which particles protrude at the top and at the bottom from the oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 – 80% of their diameters. Often freely suspended porous membranes are too fragile to operate them in pressure filtration without supportive structure. To improve mechanical stability of porous membranes, a mixture of silica particles with an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of the oil and removal of particles yields porous membrane attached to the fibers of the support. Due to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated. To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto the water surface with the oil. Solidification of the oil and then removal of particles gives rise to porous membranes with pore diameters in micrometer range. Another concept of improvement of mechanical stability is the preparation of asymmetric membranes via spreading of a mixture of two sorts of particles with opposite surface properties with the oil onto the water surface. After solidification of the oil and removal of particles, membranes with pores width in the range from 30 – 50 nm are obtained. Slow removal of silica particles from composite monolayer that floats on the water surface gives rise to silica rings in intermediate stages of removal. Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar process as detailed above by using carbon particles instead of silica. Carbon molecular sieves protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability and selectivity through these membranes are much higher than in membranes where particles are smaller than the membrane thickness. / Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche, führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur durchzuführen. Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist. Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes sind die daran angehefteten Membranen gewellt. Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich. Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen Porenweiten an der Oberseite und großen Porenweiten an der Unterseite. Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten. Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in denen die Partikel kleiner als der Membrandicke sind.
78

Carbon molecular sieve dense film membranes for ethylene/ethane separations

Rungta, Meha 07 November 2012 (has links)
The current work focused on defining the material science options to fabricate novel, high performing ethylene/ethane (C₂H₄/C₂H₆) separation carbon molecular sieve (CMS) dense film membranes. Three polymer precursors: Matrimid®, 6FDA-DAM and 6FDA:BPDA-DAM were used as precursors to the CMS membranes. CMS performances were tailored by way of tuning pyrolysis conditions such as the pyrolysis temperature, heating rate, pyrolysis atmosphere etc. The CMS dense film membranes showed attractive C₂H₄/C₂H₆ separation performance far exceeding the polymeric membrane performances. Semi-quantitative diffusion size pore distributions were constructed by studying the transport performance of a range of different penetrant gases as molecular sized probes of the CMS pore structure. This, in conjunction with separation performance data, provided critical insights into the structure-performance relationships of the CMS materials. The effects of testing conditions, i.e. the testing temperature, pressure and feed composition on C₂H₄/C₂H₆ separation performance of CMS dense films were also analyzed. These studies were useful not just in predicting the membrane behavior from a practical stand-point, but also in a fundamental understanding of the nature of CMS membrane separation. The study helped clarify why CMS membranes outperform polymeric membrane performance, as well as allowed comparison between CMS derived from different precursors and processing conditions. The effects on C₂H₄/C₂H₆ separation in the presence of binary gas mixture were also assessed to get a more realistic measure of the CMS performance resulting from competition and bulk flow effects. The current work thus establishes a framework for guiding research ultimately aimed at providing a convenient, potentially scalable hollow fiber membrane formation technology for C₂H₄/C₂H₆ separation
79

Carbon molecular sieve hollow fiber membranes for olefin/paraffin separations

Xu, Liren 25 September 2013 (has links)
Olefin/paraffin separation is a large potential market for membrane applications. Carbon molecular sieve membranes (CMS) are promising for this application due to the intrinsically high separation performance and the viability for practical scale-up. Intrinsically high separation performance of CMS membranes for olefin/paraffin separations was demonstrated. The translation of intrinsic CMS transport properties into the hollow fiber configuration is considered in detail. Substructure collapse of asymmetric hollow fibers was found during Matrimidᆴ CMS hollow fiber formation. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM polyimides with higher rigidity were employed as alternative precursors, and significant improvement has been achieved. Besides the macroscopic morphology control of asymmetric hollow fibers, the micro-structure was tuned by optimizing pyrolysis temperature protocol and pyrolysis atmosphere. In addition, unexpected physical aging was observed in CMS membranes, which is analogous to the aging phenomenon in glassy polymers. For performance evaluation, multiple "proof-of-concept" tests validated the viability of CMS membranes under realistic conditions. The scope of this work was expanded from binary ethylene/ethane and propylene/propane separations for the debottlenecking purpose to mixed carbon number hydrocarbon processing. CMS membranes were found to be olefins-selective over corresponding paraffins; moreover, CMS membranes are able to effectively fractionate the complex cracked gas stream in a preferable way. Reconfiguration of the hydrocarbon processing in ethylene plants is possible based on the unique CMS membranes.
80

Synthesis and Characterization of Hydrophilic-Hydrophobic Poly (Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

Nebipasagil, Ali 26 January 2015 (has links)
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamide-terminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDEL® foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and α-ω-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivities of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and α,ω-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology. / Ph. D.

Page generated in 0.1293 seconds