Spelling suggestions: "subject:"sas separation membranes."" "subject:"suas separation membranes.""
81 |
Matériaux innovants à base de polymères et de liquides ioniques. / Innovative polymer-based membrane materials containing reactive (RILs) and polymerizable (PIL) ionic liquidsRynkowska, Edyta 14 February 2019 (has links)
Au cours des dernières décennies, les technologies membranaires ont largement contribué à l’amélioration des procédés de séparation à l’échelle industrielle grâce à de nombreux avantages, tels que la sélectivité de la séparation élevée, la possibilité de travailler avec des composés thermolabiles et la faible demande en énergie, ainsi que la possibilité de combiner les technologies membranaires avec d'autres procédés de séparation. Le procédé de pervaporation est une technique de séparation membranaire importante utilisée pour séparer les mélanges liquides binaires ou multicomposants, y compris les solvants à point d’ébullition proche, les mélanges azéotropes et les isomères. Il s’agit du transfert sélectif de matière à travers une membrane dense. Au cours de cette opération, le perméat sous forme vapeur est condensé sur une paroi froide, mais, contrairement à la distillation, seule une faible partie de la charge subit ce changement d’état. Les membranes utilisées dans la pervaporation doivent posséder une forte sélectivité, une stabilité chimique et une résistance mécanique à haute température élevées. La sélectivité et les propriétés de transport de la membrane déterminent l'efficacité globale du processus de séparation. La caractérisation approfondie des membranes est cruciale pour bien comprendre l’influence de la structure de la membrane et des conditions de préparation de la membrane sur les caractéristiques d’équilibre, de séparation et de transport des membranes étudiées, en vue de développer de nouveaux matériaux polymères efficaces. Les nombreuses recherches ont également été menées sur le développement des membranes avec de liquides ioniques (LIs) afin de personnaliser les propriétés de séparation des membranes utilisées dans la séparation des liquides par pervaporation, la séparation des gaz et la séparation des ions métalliques ainsi que les membranes conductrices dans les piles à combustible. Les LIs sont caractérisés par une bonne stabilité thermique, une conductivité ionique élevée, une pression de vapeur négligeable et un point de fusion assez bas. En raison de leurs nombreuses propriétés uniques, les membranes polymères contenant des LIs possèdent une large gamme d'avantages, comme de meilleures propriétés de séparation que les membranes polymères classiques. Ce fait est lié à une diffusion moléculaire beaucoup plus élevée dans un liquide ionique que dans des polymères. Par conséquent, l'utilisation de membranes à base de polymères et LIs dans les processus de séparation permettrait une sélectivité de séparation élevée et des flux plus importants. La structure et les propriétés physicochimiques des LIs peuvent être ciblées en fonction de l’application afin d'obtenir un matériau polymère approprié. En revanche, même si l’application de membranes hybrides à base de polymères et LIs suscite un intérêt croissant, leur utilisation dans les procédés de séparation reste limitée en raison des pertes de LI non lié. Cette thèse de doctorat en co-tutelle est réalisée entre la Faculté de Chimie de l'Université Nicolaus Copernicus (NCU) à Toruń (Pologne) et le Laboratoire Polymères, Biopolymères, Surfaces UMR 6270 CNRS de l’Université de Rouen Normandie (France). L’objectif principal de la thèse est d’élaborer de nouvelles membranes denses à base de poly (alcool vinylique) (PVA) et d’acétate-propionate de cellulose (CAP) et de divers LIs réactifs et polymérisables ceci afin d’obtenir un système polymère-liquide ionique dans lequel le LI est stabilisé par liaison covalente avec les chaînes macromoléculaires du polymère. L'étude des propriétés physicochimiques et d'équilibre des membranes a été effectuée ainsi que l’analyse de leurs propriétés de transport. De plus, les membranes sélectionnées ont été testées dans un processus de pervaporation en contact avec le mélange eau-propane-2-ol. / In the last decades, membrane separation has played an important role in many industrial processes thanks to its versatility, low energy consumption, high performances of membranes, as well as a possibility of combining membrane technologies with other separation processes. Membrane technologies gave a great contribution to the improvement of separation processes in the industrial scale thanks to a number of advantages, such as the high selectivity of the separation, the opportunity to work with thermolabile compounds, and low energy demand. Pervaporation process is an important membrane separation technique used to separate binary or multicomponent liquid mixtures including close boiling solvents, azeotrope mixtures, and isomers. During pervaporation, feed components are in the direct contact with one side of the lyophilic membrane, while the selected components are preferentially transported across the membrane to the permeate side. Membranes used in pervaporation must be characterized by high selectivity, chemical stability, and mechanical strength at high temperatures. Selectivity and transport properties of the membrane determine the overall efficiency of the separation process. The comprehensive characterization of membranes is the crucial approach and can lead to broaden the knowledge about the influence of the membrane structure and membrane preparation conditions on the equilibrium, separation, and transport characteristics of the studied membranes, in order to develop new polymer materials with the expected efficiency of the separation process. Research has been also focused on the development of the membranes filled with ILs in order to tailor the separation properties of the developed membranes used in liquid separation by pervaporation, gas separation, and separation of metal ions as well as the conducting barriers in fuel cells. ILs are characterized by good thermal stability, high ionic conductivity, negligible vapor pressure, and low melting point. Due to their numerous unique properties, polymer membranes containing ILs (polymer-ILs) possess wide range of advantages, like better separation properties than the classical polymer membranes. This fact is related with much higher molecular diffusion in ionic liquid than in polymers. Therefore, the use of polymer-ILs in separation processes would result in superior separation behavior and higher fluxes. Morphology and physicochemical properties of ILs can be “tailored” depending on the separated system in order to obtain a suitable polymer material for a given separation process without preparation of a chemically new membrane. Even though there is a growing interest in the application of polymer membranes filled with ILs, the polymer-ILs based separation processes are limited due to the losses of the unbound ionic liquid in the course of the exploitation. The PhD is realized in the frame of "co-tutelle" system between the Faculty of Chemistry at the Nicolaus Copernicus University (NCU) in Toruń, Poland (Membranes and Membrane Separation Processes Research Group) and the University of Rouen Normandy, France (Barrier Polymer Materials and Membranes (MPBM) Research Group of the Laboratory of Polymers, Biopolymers, Surfaces (PBS)). The main aim of the present PhD thesis is to elaborate novel dense membranes based on poly(vinyl alcohol) (PVA) and cellulose acetate propionate (CAP) filled with various reactive and polymerizable ILs in order to obtain the polymer-ionic liquid system in which ionic liquids are linked inside the polymer structure. The investigation of physicochemical characteristics and study of the equilibrium, barrier, and transport properties of the obtained membranes was carried out. Furthermore, the selected membranes were tested in pervaporation process in contact with water-propan-2-ol mixture, water and gas permeation measurements.
|
82 |
Membranes via particle assisted wettingMarczewski, Dawid 05 June 2009 (has links)
Spreading of mixtures of oil with suitable silica particles onto a water surface leads to the
formation of composite layers in which particles protrude at the top and at the bottom from the
oil. Solidification of the oil and removal of the particles give rise to porous membranes. Pore
widths and membrane thicknesses depend on particle sizes and usually are in the range of 70 –
80% of their diameters. Often freely suspended porous membranes are too fragile to operate them
in pressure filtration without supportive structure.
To improve mechanical stability of porous membranes, a mixture of silica particles with
an oil is spread onto a nonwoven fibrous support that was drenched with water. Solidification of
the oil and removal of particles yields porous membrane attached to the fibers of the support. Due
to inhomogeneous surface of the fabric, the membranes that are attached to it are corrugated.
To obtain flat supportive structures, glass beads with 75 μm in diameter are spread onto
the water surface with the oil. Solidification of the oil and then removal of particles gives rise to
porous membranes with pore diameters in micrometer range.
Another concept of improvement of mechanical stability is the preparation of asymmetric
membranes via spreading of a mixture of two sorts of particles with opposite surface properties
with the oil onto the water surface. After solidification of the oil and removal of particles, membranes
with pores width in the range from 30 – 50 nm are obtained.
Slow removal of silica particles from composite monolayer that floats on the water surface
gives rise to silica rings in intermediate stages of removal.
Mixed matrix membranes with embedded carbon molecular sieves are prepared in a similar
process as detailed above by using carbon particles instead of silica. Carbon molecular sieves
protrude at the top and bottom from the polymeric matrix. Theoretical prediction of permeability
and selectivity through these membranes are much higher than in membranes where particles are
smaller than the membrane thickness. / Spreitet man Mischungen eines Öls mit geeigneten Kieselgelpartikeln auf eine Wasseroberfläche,
führt dies zur Bildung gemischter Schichten, in denen die Partikel auf der Ober- und
Unterseite aus dem Öl herausragen. Härtet man das Öl aus und entfernt die Partikel, erhält man
poröse Membranen mit einheitlichen Poren. Dabei hängen die Porenweiten und Membrandicken
von der Partikelgröße ab und betragen üblicherweise 70 – 80 % von deren Durchmesser. Oft sind
freitragende poröse Membranen zu zerbrechlich um mit ihnen Druckfiltration ohne Stützstruktur
durchzuführen.
Um die mechanische Stabilität von porösen Membranen zu erhöhen spreitet man eine Mischung
aus Kieselgelpartikeln und einem Öl auf einem Vliesstoff, der mit Wasser getränkt ist.
Das Aushärten des Öls und die Entfernung der Partikel führt zu einer porösen Membran, die an
die Fasern der Stützstruktur angeheftet ist. Durch die inhomogene Oberfläche des Vliesgewebes
sind die daran angehefteten Membranen gewellt.
Um eine ebene Stützstruktur zu erhalten, werden Mischungen aus dem Öl und Glaskugeln
mit einem Durchmesser von 75 μm verwendet. Das Aushärten des Öls und die Entfernung der
Partikel führt zu ebenen porösen Membranen mit Porendurchmessern im Mikrometerbereich.
Ein weiteres Konzept, um die mechanische Stabilität zu erhöhen, ist die Herstellung asymmetrischer
Membranen mit Hilfe des Spreitens einer Mischung zweier Partikelsorten mit unterschiedlichen
Oberflächeneigenschaften mit dem Öl auf die Wasseroberfläche. Nach dem Aushärten
des Öls und der Entfernung der Partikel erhält man eine asymmetrische Membran mit kleinen
Porenweiten an der Oberseite und großen Porenweiten an der Unterseite.
Durch langsames Entfernen der Kieselgelpartikel aus der gemischten Schicht, die auf der
Wasseroberfläche schwimmt, kann man in einem Zwischenstadium Kieselgelringe erhalten.
Kompositmembranen (mixed matrix membranes) mit eingebetteten Kohlenstoffmolekularsieben
werden in einem gleichen Prozess wie oben beschrieben hergestellt, indem man Kohlenstoffpartikel
anstatt der Kieselgelpartikel verwendet. Die Kohlenstoffmolekularsiebe ragen auf
der Ober- und Unterseite aus der Polymermatrix heraus. Die theoretisch vorhersagten Durchlässigkeiten
und Selektivitäten solcher Membranen sind wesentlich höher als bei Membranen, in
denen die Partikel kleiner als der Membrandicke sind.
|
83 |
Novel gas-separation membranes for intensified catalytic reactorsEscorihuela Roca, Sara 20 May 2019 (has links)
[ES] La presente tesis doctoral se centra en el desarrollo de nuevas membranas de separación de gases, así como su empleo in-situ en reactores catalíticos de membrana para la intensificación de procesos. Para este propósito, se han sintetizado varios materiales, como polímeros para la fabricación de membranas, catalizadores tanto para la metanación del CO2 como para la reacción de síntesis de Fischer-Tropsch, y diversas partículas inorgánicas nanométricas para su uso en membranas de matriz mixta. En lo referente a la fabricación de las membranas, la tesis aborda principalmente dos tipos: orgánicas e inorgánicas. Con respecto a las membranas orgánicas, se han considerado diferentes materiales poliméricos, tanto para la capa selectiva de la membrana, así como soporte de la misma. Se ha trabajado con poliimidas, puesto que son materiales con temperaturas de transición vítrea muy alta, para su posterior uso en reacciones industriales que tienen lugar entre 250-300 ºC. Para conseguir membranas muy permeables, manteniendo una buena selectividad, es necesario obtener capas selectivas de menos de una micra. Usando como material de soporte otro tipo de polímero, no es necesario estudiar la compatibilidad entre ellos, siendo menos compleja la obtención de capas finas. En cambio, si el soporte es de tipo inorgánico, un exhaustivo estudio de la relación entre la concentración y la viscosidad de la solución polimérica es altamente necesario. Diversas partículas inorgánicas nanométricas se estudiaron para favorecer la permeación de agua a través de los materiales poliméricos. En segundo lugar, en cuanto a membranas inorgánicas, se realizó la funcionalización de una membrana de paladio para favorecer la permeación de hidrógeno y evitar así la contaminación por monóxido de carbono. El motivo por el cual se dopó con otro metal la capa selectiva de la membrana metálica fue para poder emplearla en un reactor de Fischer-Tropsch. Con relación al diseño y fabricación de los reactores, durante esta tesis, se desarrolló el prototipo de un microreactor para la metanación de CO2, donde una membrana polimérica de capa fina selectiva al agua se integró para evitar la desactivación del catalizador, y a su vez desplazar el equilibrio y aumentar la conversión de CO2. Por otro lado, se rediseñó un reactor de Fischer-Tropsch para poder introducir una membrana metálica selectiva a hidrogeno y poder inyectarlo de manera controlada. De esta manera, y siguiendo estudios previos, el objetivo fue mejorar la selectividad a los productos deseados mediante el hidrocraqueo y la hidroisomerización de olefinas y parafinas con la ayuda de la alta presión parcial de hidrógeno. / [CA] La present tesi doctoral es centra en el desenvolupament de noves membranes de separació de gasos, així com el seu ús in-situ en reactors catalítics de membrana per a la intensificació de processos. Per a aquest propòsit, s'han sintetitzat diversos materials, com a polímers per a la fabricació de membranes, catalitzadors tant per a la metanació del CO2 com per a la reacció de síntesi de Fischer-Tropsch, i diverses partícules inorgàniques nanomètriques per al seu ús en membranes de matriu mixta. Referent a la fabricació de les membranes, la tesi aborda principalment dos tipus: orgàniques i inorgàniques. Respecte a les membranes orgàniques, diferents materials polimèrics s'ha considerat com a candidats prometedors, tant per a la capa selectiva de la membrana, així com com a suport d'aquesta. S'ha treballat amb poliimides, ja que són materials amb temperatures de transició vítria molt alta, per al seu posterior ús en reaccions industrials que tenen lloc entre 250-300 °C. Per a aconseguir membranes molt permeables, mantenint una bona selectivitat, és necessari obtindre capes selectives de menys d'una micra. Emprant com a material de suport altre tipus de polímer, no és necessari estudiar la compatibilitat entre ells, sent menys complexa l'obtenció de capes fines. En canvi, si el suport és de tipus inorgànic, un exhaustiu estudi de la relació entre la concentració i la viscositat de la solució polimèrica és altament necessari. Diverses partícules inorgàniques nanomètriques es van estudiar per a afavorir la permeació d'aigua a través dels materials polimèrics. En segon lloc, quant a membranes inorgàniques, es va realitzar la funcionalització d'una membrana de pal¿ladi per a afavorir la permeació d'hidrogen i evitar la contaminació per monòxid de carboni. El motiu pel qual es va dopar amb un altre metall la capa selectiva de la membrana metàl¿lica va ser per a poder emprar-la en un reactor de Fischer-Tropsch. En relació amb el disseny i fabricació dels reactors, durant aquesta tesi, es va desenvolupar el prototip d'un microreactor per a la metanació de CO2, on una membrana polimèrica de capa fina selectiva a l'aigua es va integrar per a així evitar la desactivació del catalitzador i al seu torn desplaçar l'equilibri i augmentar la conversió de CO2. D'altra banda, un reactor de Fischer-Tropsch va ser redissenyat per a poder introduir una membrana metàl¿lica selectiva a l'hidrogen i poder injectar-lo de manera controlada. D'aquesta manera, i seguint estudis previs, el objectiu va ser millorar la selectivitat als productes desitjats mitjançant el hidrocraqueix i la hidroisomerització d'olefines i parafines amb l'ajuda de l'alta pressió parcial d'hidrogen. / [EN] The present thesis is focused on the development of new gas-separation membranes, as well as their in-situ integration on catalytic membrane reactors for process intensification. For this purpose, several materials have been synthesized such as polymers for membrane manufacture, catalysts for CO2 methanation and Fischer-Tropsch synthesis reaction, and inorganic materials in form of nanometer-sized particles for their use in mixed matrix membranes. Regarding membranes manufacture, this thesis deals mainly with two types: organic and inorganic. With regards to the organic membranes, different polymeric materials have been considered as promising candidates, both for the selective layer of the membrane, as well as a support thereof. Polyimides have been selected since they are materials with very high glass transition temperatures, in order to be used in industrial reactions which take place at temperatures around 250-300 ºC. To obtain highly permeable membranes, while maintaining a good selectivity, it is necessary to develop selective layers of less than one micron. Using another type of polymer as support material, it is not necessary to study the compatibility between membrane and support. On the other hand, if the support is inorganic, an exhaustive study of the relation between the concentration and the viscosity of the polymer solution is highly necessary. In addition, various inorganic particles were studied to favor the permeation of water through polymeric materials. Secondly, as regards to inorganic membranes, the functionalization of a palladium membrane to favor the permeation of hydrogen and avoid carbon monoxide contamination was carried out. The membrane selective layer was doped with another metal in order to be used in a Fischer-Tropsch reactor. Regarding the design and manufacture of the reactors used during this thesis, a prototype of a microreactor for CO2 methanation was carried out, where a thin-film polymer membrane selective to water was integrated to avoid the deactivation of the catalyst and to displace the equilibrium and increase the CO2 conversion. On the other hand, a Fischer-Tropsch reactor was redesigned to introduce a hydrogen-selective metal membrane and to be able to inject it in a controlled manner. In this way, and following previous studies, the aim is to enhance the selectivity to the target products by hydrocracking and hydroisomerization the olefins and paraffins assisted by the presence of an elevated partial pressure of hydrogen. / I would like to acknowledge the Spanish Government, for funding my research with the Severo Ochoa scholarship. / Escorihuela Roca, S. (2019). Novel gas-separation membranes for intensified catalytic reactors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/121139
|
84 |
Passive Gas-Liquid Separation Using Hydrophobic Porous Polymer Membranes: A Study on the Effect of Operating Pressure on Membrane Area RequirementMaxwell, Taylor Patrick 01 January 2012 (has links)
The use of hydrophobic porous polymer membranes to vent unwanted gas bubbles from liquid streams is becoming increasingly more common in portable applications such as direct methanol fuel cells (DMFCs) and micro-fluidic cooling of electronic circuits. In order for these portable systems to keep up with the ever increasing demand of the mobile user, it is essential that auxiliary components, like gas-liquid separators (GLS), continue to decrease in weight and size. While there has been significant progress made in the field of membrane-based gas-liquid separation, the ability to miniaturize such devices has not been thoroughly addressed in the available literature. Thus, it was the purpose of this work to shed light on the scope of GLS miniaturization by examining how the amount porous membrane required to completely separate gas bubbles from a liquid stream varies with operating pressure. Two membrane characterization experiments were also employed to determine the permeability, k, and liquid entry pressure (LEP) of the membrane, which provided satisfying results. These parameters were then implemented into a mathematical model for predicting the theoretical membrane area required for a specified two-phase flow, and the results were compared to experimental values. It was shown that the drastically different surface properties of the wetted materials within the GLS device, namely polytetrafluoroethylene (PTFE) and acrylic, caused the actual membrane area requirement to be higher than the theoretical predictions by a constant amount. By analyzing the individual effects of gas and liquid flow, it was also shown that the membrane area requirement increased significantly when the liquid velocity exceeded an amount necessary to cause the flow regime to transition from wedging/slug flow to wavy/semi-annular flow.
|
Page generated in 0.1589 seconds