• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des propriétés physico-chimiques de la lactorferrine et de son fractionnement par procédés membranaires

Brisson, Guillaume January 2006 (has links)
No description available.
2

Développement de nouvelles membranes à base de polyimide pour la séparation Co2/Ch4

Chen, Xiao Yuan 19 April 2018 (has links)
Dans ce travail, on étudie la conception de membranes à base de polyimide et des membranes à matrices mixtes pour la séparation du mélange de gaz CO2/CH4. Une première série de membranes était entièrement constituée de polyimides. La synthèse et la fabrication des membranes a permis l'optimisation des propriétés de transport comme la perméabilité et la sélectivité pour les gaz purs et les mélanges gazeux. Par la suite, les propriétés de transport de gaz des membranes homo-polyimide (6FDA-ODA) et co-polyimides (6FDA-ODA/TeMPD) ont été étudiées pour différents rapports molaires de diamines (ODA et TeMPD). La perméabilité et le facteur de séparation en fonction de la fraction molaire de CO2 dans l'alimentation sont rapportés. Ensuite, les propriétés des membranes de polyimides (6FDA-ODA et 6FDA-ODA/TeMPD) réticulé par l'APTMDS sont rapportées en fonction du temps d'immersion ou de la concentration d'APTMDS. Dans ce cas, les résultats montrent que la performance des membranes 6FDA-ODA modifiées est au-dessus de la courbe limite supérieure de Robeson et que les membranes modifiées peuvent supporter des pressions assez élevées car la plastification est pratiquement éliminée. Finalement, des membranes composites sont produites en se servant de zeolites et de MOF comme phase dispersée dans le polyimide à base de 6FDA-ODA. La zéolite FAU/EMT greffée par l'aminopropyl méthyle éthoxysilane dans des solvants de polarités différentes et plusieurs types de MOF tels que MIL-53 et UIO-66 fonctionnalisés par des groupements amine sont étudiés. Les résultats montrent que les performances des MMM à base de 6FDA-ODA avec 25% poids de zéolite et différentes concentrations de A1-MIL-53-NH2 sont excellents pour la séparation CO2/CH4. Une étude détaillée de la relation entre les propriétés des membranes MMM et leur morphologie, selon leurs interactions avec l'aminé greffée sur la phase inorganique et l'agent de reticulation, est aussi rapportée.
3

Impact of physicochemical properties of filtration membranes on peptide migration and selectivity during electrodialysis with filtration membranes : development of predictive statistical models and understanding of mechanisms involved

Kadel, Sabita 19 January 2021 (has links)
Au cours du procédé d'électrodialyse avec membrane de filtration (EDMF), les peptides chargés migrent sélectivement à travers des membranes de filtration (MFs) dans les compartiments respectifs de récupération des peptides anioniques (ARC) ou cationiques (C+ RC). Par conséquent, le type d'interaction entre les peptides et l'interface de la MF, en raison de ses propriétés physicochimiques, doit avoir un impact significatif sur la performance globale de l’EDMF (migration et sélectivité des peptides). Donc, l'objectif principal de cette thèse de doctorat était d'étudier les propriétés physicochimiques principales des MFs qui contribuent aux interactions interfaciales peptide-membrane facilitant ou entravant la migration globale et la séparation sélective des peptides pendant l’EDMF, et de comprendre les mécanismes impliqués dans ces interactions. Ainsi, dans cette étude, 16 MFs, caractérisées en termes de propriétés physicochimiques (potentiel zêta, conductivité, nature hydrophile/hydrophobe de la surface et des pores, épaisseur, rugosité, porosité et pourcentage de distribution des macropores dans la couche filtrante), ont été testées lors de l'EDMF pour séparer simultanément les peptides anioniques et cationiques d'un hydrolysat de protéines de lactosérum complexe et bien caractérisé. Dans la première étude, 6 MFs, différentes en termes de matériau, ont été testées incluant une membrane d’ultrafiltration (polyéthersulfone (PES)) comme contrôle et cinq membranes de microfiltration (fluorure de polyvinylidène (PVDF) et chlorure de polyvinyle (PVC-silice, fonctionnalisée (sulfopropyle ou amine quaternaire) ou non)). Les analyses de redondance (RDA) et de régression multivariées ont démontré qu’au moins deux des quatre propriétés suivantes des MF avaient un impact significatif sur la migration de tout peptide chargé ; le potentiel zêta, l’hydrophilie de surface/des pores, la porosité et la rugosité. De plus, l'effet important de la taille des pores sur la sélectivité des peptides a également été rapportée dans cette étude. Enfin, des modèles statistiques prédictifs qui relient la migration des peptides avec les propriétés de MF significatives ont été proposés. Dans la deuxième étude, réalisée sur des membranes de PES avec une large gamme de seuils de coupure (MWCO) de (5 à 300 kDa), une relation linéaire a été observée entre le MWCO et la migration globale des peptides (MGP) pour les deux compartiments de récupération. iii Cependant, la migration sélective des peptides vers ARC ou C+ RC s'est révélée être influencée par le MWCO des MFs ainsi que par les propriétés physicochimiques (charge et poids moléculaire (PM)) des peptides ; la migration d'un peptide ayant un faible PM et une faible charge (positive ou négative) était favorisée lorsqu’une MF ayant un petit MWCO était utilisée, tandis que l’inverse se produisait pour un peptide ayant un PM élevé et une charge élevée. Dans la troisième étude, l'effet de la combinaison du matériau de la membrane (polyacrylonitrile (PAN), PES et PVDF) /MWCO (30 et 50 kDa) sur la migration et la sélectivité des peptides, a tout d’abord été étudié. Les effets simples du matériau membranaire et du MWCO sur la MGP vers C+ RC, de même que l'effet combiné des matériaux membranaires/MWCO sur la MGP vers ARC et la migration sélective des peptides vers les deux compartiments de récupération ont été observés. Deuxièmement, une RDA réalisée sur l’ensemble des données obtenues pour les MFs sélectives testées dans cette recherche doctorale, a démontré l'impact significatif du potentiel zêta, de la conductivité, de la rugosité et du pourcentage de distribution des macropores dans la couche filtrante des MFs sur la MGP. Concernant la migration sélective des peptides, en plus des propriétés des MFs susmentionnées, l'impact significatif de l'angle de contact a été démontré pour au moins la migration d’un peptide anionique et/ou cationique vers leurs compartiments de récupération respectifs. Ces propriétés significatives ont favorisé différentes interactions telles qu’électrostatique, exclusion de taille et hydrophile/hydrophobe entre l’interface de la MF et le peptide, ce qui a eu pour effet de, soit faciliter, soit inhiber la migration de ce peptide. Enfin, des modèles statistiques prédictifs globaux ont été développés pour la MGP et pour la migration de chaque peptide individuel vers ARC et/ou C+ RC en fonction des propriétés importantes de la MF utilisée. Ces modèles permettent ainsi l'estimation du comportement de migration de ces peptides lorsque les MFs, sur une large gamme de propriétés physicochimiques, sont utilisées en EDMF. Les résultats obtenus dans cette thèse ont démontré, pour la première fois, la corrélation significative entre les propriétés physicochimiques des MFs, et la migration et la sélectivité des peptides pendant l'EDMF. Cependant, les modèles prédictifs développés dans cette étude iv peuvent être utilisés pour la gamme de peptides et les propriétés physicochimiques des MFs testées. Par contre, les mécanismes et explications proposés dans cette étude, concernant les interactions MF/peptide, peuvent être généralisés afin de comprendre tous les types d'interactions peptide/membrane. Comme perspectives à ce travail, l’étude de différentes sources d'hydrolysats, d’autres MFs et d’un hydrolysat produit par d’autres enzymes permettra la validation de ces modèles statistiques et leur généralisation. / During electrodialysis with filtration membranes (EDFM), charged peptides selectively migrate through filtration membranes (FMs) to their respective anionic (ARC) or cationic (C + RC) peptide recovery compartments. Consequently, the type of interactions occurring between FM and peptide at the interface, due to their physicochemical properties, must have significant impact on overall EDFM performances (peptide migration and selectivity). Therefore, the main objective of this doctoral thesis was to investigate the major FM properties that contribute to peptide-membrane interactions at the interface, which either facilitates or hinders global migration and selective separation of peptides during EDFM, and to understand the mechanisms involved behind those interactions. Thus, in this study, 16 FMs, characterized in terms of their physicochemical properties (zeta potential, conductivity, hydrophilic/hydrophobic nature of the surface and pores, thickness, roughness, porosity and percentage of macropores distribution in filtrating layer) were tested during EDFM to simultaneously separate anionic and cationic peptides from a well-characterized complex whey protein hydrolysate. In the first study, 6 FMs were tested, differing in terms of membrane materials, including one ultrafiltration (polyethersulfone (PES)) as a control and 5 microfiltration ( one polyvinylidene fluoride (PVDF) and four polyvinyl chloride (PVC)-silica: two functionalized (sulfonyl or amino) or two non-functionalized). Redundancy analysis (RDA) and multivariate regression analysis demonstrated that at least two FM properties among zeta potential, pore/surface hydrophilicity, porosity and roughness significantly impacted the migration of any charged peptide. In addition, the important effect of pore size on peptide selectivity was also reported. Finally, predictive statistical models that link each peptide migration with significant FM properties were proposed. In the second study, which was carried out on PES membranes with a wide range of molecular weight cut-offs (MWCOs) (5 kDa to 300 kDa), a linear relation was noticed between MWCO and global peptide migration (GPM) to both recovery compartments. However, the selective peptide migration to A - RC or C + RC was found to be influenced by the vi MWCO of FMs as well as physicochemical properties (charge and molecular weight (MW)) of peptides. For instance, the migration of a peptide having low MW and low charge (positive or negative) was favored when a FM with small MWCO was used, while the opposite was observed for a peptide having high MW and high charge. In the third study, the effect of combination of membrane material (PAN, PES and PVDF)/MWCO (30 and 50 kDa) on peptide migration and selectivity was first studied. The simple effect of membrane material and MWCO on GPM to C+ RC was observed, while the combined effect of membrane materials/MWCO on GPM to A - RC and selective peptide migration to both recovery compartments was observed. Secondly, a RDA was performed on the data obtained for all the selective FMs tested in this doctoral research, which demonstrated the significant impact of zeta potential, conductivity, roughness and percentage of macropores distribution in the filtrating layer of FMs on GPM. Concerning selective peptide migration, in addition to the aforementioned FM properties, the significant impact of contact angle was noticed for at least one anionic and/or cationic peptide migration to their respective recovery compartments. These significant FM properties were found to trigger different interactions such as electrostatic, size exclusion and hydrophilic/hydrophobic between FM and peptide at the interface resulting in either facilitation or inhibition of peptide migration. Finally, global predictive statistical models were developed for GPM and each individual peptide migration to ARC and/or C+ RC based on these significant FM properties, which allow the estimation of their migration behavior when FMs having a wide range of physicochemical properties are used during EDFM. The results obtained in this Ph.D. thesis demonstrated, for the first time, the significant correlation between physicochemical properties of FMs, and peptide migration and selectivity during EDFM. The predictive models developed in this study can be used for the range of peptides and FMs tested. Moreover, the types of interactions occurring between FMs and peptide at the interface, and mechanisms and explanations proposed in this study can be applied to understand all types of peptide/membrane interactions. Validation of such models vii by using different sources of hydrolysates or different FMs or a hydrolysate produced by other enzymes will be the main perspectives of this research work.
4

Matériaux innovants à base de polymères et de liquides ioniques. / Innovative polymer-based membrane materials containing reactive (RILs) and polymerizable (PIL) ionic liquids

Rynkowska, Edyta 14 February 2019 (has links)
Au cours des dernières décennies, les technologies membranaires ont largement contribué à l’amélioration des procédés de séparation à l’échelle industrielle grâce à de nombreux avantages, tels que la sélectivité de la séparation élevée, la possibilité de travailler avec des composés thermolabiles et la faible demande en énergie, ainsi que la possibilité de combiner les technologies membranaires avec d'autres procédés de séparation. Le procédé de pervaporation est une technique de séparation membranaire importante utilisée pour séparer les mélanges liquides binaires ou multicomposants, y compris les solvants à point d’ébullition proche, les mélanges azéotropes et les isomères. Il s’agit du transfert sélectif de matière à travers une membrane dense. Au cours de cette opération, le perméat sous forme vapeur est condensé sur une paroi froide, mais, contrairement à la distillation, seule une faible partie de la charge subit ce changement d’état. Les membranes utilisées dans la pervaporation doivent posséder une forte sélectivité, une stabilité chimique et une résistance mécanique à haute température élevées. La sélectivité et les propriétés de transport de la membrane déterminent l'efficacité globale du processus de séparation. La caractérisation approfondie des membranes est cruciale pour bien comprendre l’influence de la structure de la membrane et des conditions de préparation de la membrane sur les caractéristiques d’équilibre, de séparation et de transport des membranes étudiées, en vue de développer de nouveaux matériaux polymères efficaces. Les nombreuses recherches ont également été menées sur le développement des membranes avec de liquides ioniques (LIs) afin de personnaliser les propriétés de séparation des membranes utilisées dans la séparation des liquides par pervaporation, la séparation des gaz et la séparation des ions métalliques ainsi que les membranes conductrices dans les piles à combustible. Les LIs sont caractérisés par une bonne stabilité thermique, une conductivité ionique élevée, une pression de vapeur négligeable et un point de fusion assez bas. En raison de leurs nombreuses propriétés uniques, les membranes polymères contenant des LIs possèdent une large gamme d'avantages, comme de meilleures propriétés de séparation que les membranes polymères classiques. Ce fait est lié à une diffusion moléculaire beaucoup plus élevée dans un liquide ionique que dans des polymères. Par conséquent, l'utilisation de membranes à base de polymères et LIs dans les processus de séparation permettrait une sélectivité de séparation élevée et des flux plus importants. La structure et les propriétés physicochimiques des LIs peuvent être ciblées en fonction de l’application afin d'obtenir un matériau polymère approprié. En revanche, même si l’application de membranes hybrides à base de polymères et LIs suscite un intérêt croissant, leur utilisation dans les procédés de séparation reste limitée en raison des pertes de LI non lié. Cette thèse de doctorat en co-tutelle est réalisée entre la Faculté de Chimie de l'Université Nicolaus Copernicus (NCU) à Toruń (Pologne) et le Laboratoire Polymères, Biopolymères, Surfaces UMR 6270 CNRS de l’Université de Rouen Normandie (France). L’objectif principal de la thèse est d’élaborer de nouvelles membranes denses à base de poly (alcool vinylique) (PVA) et d’acétate-propionate de cellulose (CAP) et de divers LIs réactifs et polymérisables ceci afin d’obtenir un système polymère-liquide ionique dans lequel le LI est stabilisé par liaison covalente avec les chaînes macromoléculaires du polymère. L'étude des propriétés physicochimiques et d'équilibre des membranes a été effectuée ainsi que l’analyse de leurs propriétés de transport. De plus, les membranes sélectionnées ont été testées dans un processus de pervaporation en contact avec le mélange eau-propane-2-ol. / In the last decades, membrane separation has played an important role in many industrial processes thanks to its versatility, low energy consumption, high performances of membranes, as well as a possibility of combining membrane technologies with other separation processes. Membrane technologies gave a great contribution to the improvement of separation processes in the industrial scale thanks to a number of advantages, such as the high selectivity of the separation, the opportunity to work with thermolabile compounds, and low energy demand. Pervaporation process is an important membrane separation technique used to separate binary or multicomponent liquid mixtures including close boiling solvents, azeotrope mixtures, and isomers. During pervaporation, feed components are in the direct contact with one side of the lyophilic membrane, while the selected components are preferentially transported across the membrane to the permeate side. Membranes used in pervaporation must be characterized by high selectivity, chemical stability, and mechanical strength at high temperatures. Selectivity and transport properties of the membrane determine the overall efficiency of the separation process. The comprehensive characterization of membranes is the crucial approach and can lead to broaden the knowledge about the influence of the membrane structure and membrane preparation conditions on the equilibrium, separation, and transport characteristics of the studied membranes, in order to develop new polymer materials with the expected efficiency of the separation process. Research has been also focused on the development of the membranes filled with ILs in order to tailor the separation properties of the developed membranes used in liquid separation by pervaporation, gas separation, and separation of metal ions as well as the conducting barriers in fuel cells. ILs are characterized by good thermal stability, high ionic conductivity, negligible vapor pressure, and low melting point. Due to their numerous unique properties, polymer membranes containing ILs (polymer-ILs) possess wide range of advantages, like better separation properties than the classical polymer membranes. This fact is related with much higher molecular diffusion in ionic liquid than in polymers. Therefore, the use of polymer-ILs in separation processes would result in superior separation behavior and higher fluxes. Morphology and physicochemical properties of ILs can be “tailored” depending on the separated system in order to obtain a suitable polymer material for a given separation process without preparation of a chemically new membrane. Even though there is a growing interest in the application of polymer membranes filled with ILs, the polymer-ILs based separation processes are limited due to the losses of the unbound ionic liquid in the course of the exploitation. The PhD is realized in the frame of "co-tutelle" system between the Faculty of Chemistry at the Nicolaus Copernicus University (NCU) in Toruń, Poland (Membranes and Membrane Separation Processes Research Group) and the University of Rouen Normandy, France (Barrier Polymer Materials and Membranes (MPBM) Research Group of the Laboratory of Polymers, Biopolymers, Surfaces (PBS)). The main aim of the present PhD thesis is to elaborate novel dense membranes based on poly(vinyl alcohol) (PVA) and cellulose acetate propionate (CAP) filled with various reactive and polymerizable ILs in order to obtain the polymer-ionic liquid system in which ionic liquids are linked inside the polymer structure. The investigation of physicochemical characteristics and study of the equilibrium, barrier, and transport properties of the obtained membranes was carried out. Furthermore, the selected membranes were tested in pervaporation process in contact with water-propan-2-ol mixture, water and gas permeation measurements.

Page generated in 0.1982 seconds