• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 25
  • 24
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 51
  • 31
  • 30
  • 29
  • 22
  • 21
  • 20
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Étude expérimentale de l'écoulement gaz-liquide dans un canal ouvert vers le bas /

Toulouse, Dominic, January 2007 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, 2007. / La p. de t. porte en outre: Mémoire présenté à l'Université du Québec à Chicoutimi comme exigence partielle de la maîtrise en ingénierie. CaQCU Bibliogr.: f. 184-186. Document électronique également accessible en format PDF. CaQCU
52

The Onsager heat of transport at the liquid-vapour interface of p-tert-butyltoluene : a thesis completed as the requirement for the degree of Master of Science in Chemistry, University of Canterbury /

Biggs, Georgina Aimee. January 2007 (has links)
Thesis (M. Sc.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (leaves 60-64). Also available via the World Wide Web.
53

Hydrophobicity, solvation and structure formation in liquids

Chacko, Blesson January 2017 (has links)
In this thesis we use density functional theory (DFT) to study the solvent mediated interactions between solvophobic, solvophilic and patchy nanostructures namely rectangular cross section blocks. We calculate both the density profiles and local compressibility around the blocks and the results obtained for our model system provide a means to understanding the basic physics of solvent mediated interactions between nanostructures, and between objects such as proteins in water, that possess hydrophobic and hydrophilic patches. Our results give an improved understanding of the behaviour of liquids around solvophobic objects and solvophobicity (hydrophobicity) in general. Secondly, we look into the physics incorporated in standard mean-field DFT. This is normally derived by making what appears to be a rather drastic approximation for the two body density distribution function: ρ(2)(r,r′) ≈ ρ(r)ρ(r′), where ρ(r) is the one-body density distribution function. We provide a rationale for why the DFT often does better than this approximation would make you expect. Finally, we develop a lattice model to understand the nature of the pattern formation exhibited by certain systems of particles deposited on liquid-air interfaces and in particular the nature of the transitions between the different patterned structures that are observed. This is done using Monte Carlo computer simulations and DFT and links the observed microphase ordering with the micellisation process seen e.g. in surfactant systems.
54

Estudos da atividade antiespumante de ésteres etílicos derivados de óleos vegetais / Estudo da atividade antiespumante de ésteres etílicos derivados de óleos vegetais

Walter Hugo Venturelli 15 August 2008 (has links)
Espumas gás-líquido são sistemas coloidais constituídos de bolhas de ar separadas por filmes finos de líquido, sendo estabilizadas cineticamente pela presença de tensoativos. O uso de substâncias antiespumantes, torna-se necessário para que não haja perdas de matéria prima ou perda da eficiência de determinados processos. As misturas espumantes utilizadas neste trabalho foram soluções aquosas de dodecil sulfato de sódio (SDS) e dioctilsulfosuccinato de sódio (AOT), além de uma mistura de fermento biológico e melaço de cana em condições que simulam o processo de fermentação. Os antiespumantes comerciais são compostos principalmente por siliconas e poliéteres, que não são derivados de fontes renováveis. Esta dissertação apresenta resultados do estudo da ação antiespumante de ésteres etílicos com diferentes graus de saturação (derivados de sebo animal e de óleos de soja e babaçu), na presença ou não de partículas coloidais de sílica com superfície hidrofóbica. Dois métodos de geração de espuma foram utilizados, o de Barstch e o de Bikerman, e os parâmetros utilizados para avaliação da ação antiespumante foram: o volume de espuma formado, a velocidade de quebra da espuma e a velocidade de drenagem do líquido da espuma. De uma maneira geral, os resultados mostram que não é possível uma racionalização quanto ao efeito antiespumante e o grau de saturação dos ésteres utilizados, porém os mesmos apresentam boa atividade antiespumante e apresentam efeito sinérgico na presença de partículas hidrofóbicas apresentando, portanto, potenciais aplicações industriais, uma vez que sua ação é comparável ou, em alguns casos, melhor do que aquela observada para formulações comerciais. No caso particular das espumas estabilizadas com mosto a ação dos ésteres sobre a drenagem das espumas segue a ordem: soja <babaçu < sebo, sendo, portanto, o mais saturado aquele a apresentar o maior efeito. / Gas-liquid foams are colloidal systems formed by air bubbles separated by a liquid thin film stabilized by surfactants, which are often found in many industrial processes. It becomes often necessary the use of antifoams to avoid loses of material or loses in the processs efficiency caused by a large foam production. The foaming mixtures utilized in this work were aqueous solutions of sodium dodecyl sulfate, SDS, and sodium dioctylsulfosuccinate, AOT, besides a mixture of sugar syrup and yeast in conditions compared to that used in fermentation process. The commercial antifoams usually comprise silicones and polyethers petrol derivatives, so the use of natural derivative oils can be very interesting since they are biodegradable and are obtained of natural sources. This dissertation presents results of the antifoam effect of ethylic esters with different saturation degree (animal fatty, soy oil, and coconut oil derivatives) in the presence and the absence of hydrophobic silica. Two methods are employed for foam characterization: the Barstch and Bikerman tests. The parameters utilized to evaluate the antifoam efficiency are the foam volume, foam stability and drainage rate of the liquid. In a general way, the results show that there is not a rationalization about the different saturation degree and the antifoam efficiency, but they all present a good effect in the foam prevention, exhibiting a synergistic effect in the presence of hydrophobic silica indicating that upon an additional study they can become a market alternative for antifoams, since their effect are comparable or in some cases better than those measured for commercial formulations. In the particular case of the sugar syrup the effect of the esthers upon foam drainage follows the trend: soya<babassu<animal fat, being the most active the most saturated one.
55

Turbulent mixing induced by Richtmyer-Meshkov instability

Krivets, V. V., Ferguson, K. J., Jacobs, J. W. January 2017 (has links)
Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent. where a fairly wide range of values is found varying from theta approximate to 0.2 to 0.6.
56

[en] NUMERICAL INVESTIGATION OF AMINE BASED ABSORPTION PROCESSES FOR CARBON DIOXIDE CAPTURE IN CCS PROJECTS / [pt] INVESTIGAÇÃO NUMÉRICA DO PROCESSO DE SEPARAÇÃO DE DIÓXIDO DE CARBONO POR ABSORÇÃO COM AMINA PARA APLICAÇÃO EM PROJETO DE ARMAZENAMENTO DE CARBONO DE (CCS)

HERBERTH ARTURO VASQUEZ HARO 26 April 2010 (has links)
[pt] Absorção é um processo no qual os componentes de uma corrente gasosa são separados através do uso de um solvente líquido. O processo pode ser simplesmente físico ou seguido por uma reação química. Na indústria, um processo de absorção importante é a remoção de dióxido de carbono (CO2), usando uma solução aquosa de monoethanolamina (MEA), dos gases de combustão expelidos pelas plantas alimentadas por combustíveis fosseis tais como: as usinas de geração de energia, a indústria farmacêutica, a indústria de petróleo, etc. Os projetos desenvolvidos por grandes corporações usualmente são cercados de sigilo, e as companhias evitam a divulgação de suas soluções tecnológicas. Além disso, no Brasil pouco tem-se publicado a respeito. Neste trabalho, apresenta-se um modelo simples que simula a absorção de CO2 em solução aquosa de MEA. O modelo envolve as equações de conservação de massa, quantidade de movimento e energia, podendo predizer o comportamento geral do processo de absorção. Os resultados das simulações da absorção de CO2 em contracorrente com uma coluna de filme líquido foram comparados com dados experimentais disponíveis apresentando uma boa concordância. / [en] Absorption is a process where the components of a gaseous stream are separated through the use of a liquid solvent. The process may be simply physical or be followed by a chemical reaction. In industry, one of the most important absorption processes is the removal of carbon dioxide (CO2), by using an aqueous solution of monoethanolamine (MEA), from flue gases exhausted by fossil-fuel-fired power plants, the pharmaceutical industry, the petroleum industry, etc. The projects developed by large companies usually are surrounded by secrecy and the companies avoid dissemination of their technological solutions. In addition, there is almost nothing published in Brazil about this subject. In this work, we present a simple model that simulates the absorption of CO2 by a MEA based aqueous solution. The model involves the equations for the conservation of mass, momentum, and energy, and may predict the general behavior of the absorption process. Results for the simulation of the absorption of CO2 in a countercurrent liquid film contactor were compared with available experimental data, presenting good agreement.
57

Développement d'un microreacteur plasma pour la synthèse chimique / Development of a plasma microreactor for chemical synthesis

Zhang, Mengxue 22 November 2016 (has links)
La manipulation d'espèces radicalaires de haute énergie dans des conditions expérimentales de sécurité, et qui permet la prédictibilité et l'efficacité des processus engagés demeure un défi en synthèse moléculaire. Pour relever ce défi et développer ainsi de nouvelles voies de synthèses plus propres, notamment en limitant le nombre d’étapes et la consommation en solvants et en catalyseurs, l’équipe Procédés, Plasma, Microsystèmes de Chimie ParisTech développe au sein de l’Institut Pierre-Gilles de Gennes des réacteurs plasma gaz-liquide micro-structurés. Dans cette thèse, des procédés de microfabrication ont été développés afin d’élaborer des microréacteurs diphasiques avec plasma intégré. Deux types de microréacteurs sont présentés dans cette thèse. Le premier type de réacteur utilise des géométries permettant de générer des micro-bulles dans un flux de liquide. Les résultats expérimentaux ont pu démontrer la formation d’un plasma au sein de ces systèmes. Cependant, le transfert des radicaux à l’interface reste assez faible selon une modélisation numérique. Un deuxième microréacteur contenant des cavités de gaz a été ensuite conçu. La phase gazeuse reste immobile tandis que la phase liquide progresse dans le microcanal. Le transfert de radicaux de la phase gazeuse vers la phase liquide a été mis en évidence (réaction de fluorescence), et la nature et quantité des radicaux ont été déterminées (réaction de spin-trapping). Ces résultats ont pu être confrontés à ceux d’une simulation numérique en utilisant le logiciel COMSOL Multiphysics. / Recently, organic synthesis by plasma technology is drawing more and more attention to chemists. The generation of a plasma leads to various reactive species (electrons, radicals, and positive and negative ions, etc.) which can therefore promote various chemical reactions. Engaging fewer reactions and catalysts and consuming less solvent, plasma-assisted reactions open up new and cleaner routes for organic synthesis. To control the selectivity of the radical reaction, it is necessary to precisely control the concentration of reactants and products, and be able therefore to inject or extract precisely chemical compounds in the reactive medium. As a consequence, microfluidics, known for its precise handling of fluid hydrodynamics, could be an ideal tool to control the reactivity of the radical species. In this study, a novel plasma-integrated microfluidics device has been developed with the objective to perform chemical synthesis. After a first step of electrode optimization and geometry optimization, a cavity plasma microreactor was conceived using rapid prototyping techniques. When the reactant is in the liquid phase, a key point is the radical transfer process from the plasma medium to the liquid phase. This transfer process was evaluated by means of electron paramagnetic resonance spectroscopy and fluorescence measurements. Experimental results show that the migration of various radical species (H and ∙OH) from gas to liquid phase was achieved. Moreover, the COMSOL numerical tool has also been employed to evaluate and assess both the radical transfer and plasma discharge processes in the microreactor.
58

The effect of Prewetting on the Pressure Drop, Liquid Holdup and Gas-Liquid Mass Transfer in Trickle-Bed Reactors

Loudon, Dylan 02 May 2006 (has links)
The prewetting of a trickle-bed reactor has important implications in the design and operation of these reactors. This is because the prewetting changes the flow morphology (shape and texture) of the liquid flowing through the bed and leads to the existence of multiple hydrodynamic states. The extent of this change in flow morphology can be seen in the effect the prewetting of the reactor has on the pressure drop, liquid holdup and gas-liquid mass transfer. The following prewetting procedures were used: -- Levec-wetted: the bed is flooded and drained and after residual holdup stabilisation the gas and liquid flow is reintroduced -- Kan-wetted: the bed is operated in the pulse flow regime and liquid and gas flow rates are reduced to the desired set point -- Super-wetted: the bed is flooded and gas and liquid flow are introduced once draining commences For the pressure drop: -- The different prewetting procedures resulted in two distinct regions (Upper region Kan and Super-wetted, Lower region Dry and Levec-wetted) -- There was no significant difference between the Dry and Levec-wetted beds -- The pressure drop in the Kan and Super-wetted beds can be as much as seven times greater than the pressure drop in the Dry and Levec-wetted beds For the liquid holdup: -- The different prewetting procedures resulted in four distinct regions (Kan-wetted, Super-wetted, Levec-wetted, Dry bed) -- The liquid holdup in the Kan-wetted bed can be as much as four times greater than the liquid holdup in the Dry bed -- The liquid holdup in the Levec-wetted can be as much as thirty percent lower than the liquid holdup in the Kan-wetted bed For the gas-liquid mass transfer: -- The different prewetting procedures resulted in three distinct regions (Kan and Super-wetted, Levec-wetted, Dry bed) -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as six times greater than the mass transfer coefficient in the Dry bed -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as two and a half times greater than the mass transfer coefficient in the Levec-wetted bed While an increase in the liquid flow rate results in an increase in the pressure drop, liquid holdup and gas-liquid mass transfer for all of the experiments, the effect of increasing gas flow on the measured variables were more pronounced for the prewetted beds. In a prewetted bed (Kan, Super and Levec-wetted) an increase in the gas flow rate causes an increase in the volumetric gas-liquid mass transfer coefficient and a decrease in the liquid holdup. The decrease in the liquid holdup is due to the fact that the increased gas flow rate causes the films around the particles to thin and spread out. In the dry bed the flow is predominantly in the form of rivulets and the increase in gas flow rate does not affect the liquid holdup. In the case of the volumetric gas-liquid mass transfer coefficient the increased gas flow rate causes an increase in the mass transfer coefficient regardless of the prewetting procedure. This increase is due to the effect that the gas flow rate has on the liquid holdup as well as the increase in the gas-liquid interfacial area due to the increased gas-liquid interaction. If the pulsing in the Kan-wetted bed is induced by increasing the gas flow rate and keeping the liquid flow rate constant the results are significantly different. The pressure drop in the gas-pulsing experiments was lower than the pressure drop in the recorded in the Kan and Super-wetted beds, but higher than the pressure drop in the dry and Levec-wetted beds. However, the liquid holdup in the gas-pulsing experiments was higher than the liquid holdup in any of the other beds. The volumetric gas-liquid mass transfer coefficient in the gas-pulsing experiments was lower than the mass transfer coefficients of the Kan and Super-wetted beds, but higher than the mass transfer coefficients in the dry and Levec-wetted beds. The multiple operating points obtained from the different prewetting procedures are by no means the only possible operating points. By simply decreasing the draining time in the Levec-wetted bed steady state operating points can be found between those of the Super and Levec-wetted beds. This alludes to the fact that the operating conditions determined from the different prewetting modes are only boundaries and that the actual operating point can lie anywhere between these boundaries. The existence of these multiple hydrodynamic states complicates things further when a correlation is developed to determine the pressure drop, liquid holdup or the volumetric gas-liquid mass transfer coefficient. No correlation tested was able to accurately predict the pressure drop, liquid holdup or volumetric gas-liquid mass transfer coefficient in the dry or prewetted beds. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
59

Studies in gas chromatography, with particular reference to the properties and uses of adsorbents

Scott, Cyril Gordon January 1964 (has links)
No description available.
60

Computational Analyses of the Unsteady, Three Dimensional Multiphase Flow in a Liquid Ring Vacuum Pump

Ashutosh Pandey (8090501) 06 December 2019 (has links)
<div>Vacuum is needed in many applications and, there are many types of pumps that can provide the vacuum level needed. One widely used pump is the liquid-ring vacuum pump, which does not involve any solid-solid contacts at interfaces where moving and stationary parts meet. Though liquid-ring vacuum pumps are efficient and robust, manufacturers have aggressive goals on improving efficiency, performance, and range of operations.</div><div> </div><div> In this research, time-accurate computational fluid dynamic (CFD) analyses were performed to study the flow mechanisms in a liquid-ring vacuum pump to understand how it works and how the design can be improved. Based on the understanding gained, a physics based reduced order model was developed for preliminary design of the liquid ring vacuum pumps.</div><div> </div><div> In the CFD analyses, the liquid (water) was modeled as incompressible, the gas (air) as an ideal gas, and turbulence by the shear-stress transport model. The gas-liquid interface was resolved by using the volume-of-fluid method, and rotation of the impeller was enabled by using a sliding mesh. Parameters examined include the suction pressure (75, 300, and 600 Torr) and the impeller's rotational speed (1150, 1450 and 1750 rpm) with the temperature of the gas at the inlet of the suction chamber kept at 300 K and the pressure at the outlet of the exhaust chamber kept at one atmosphere. The CFD solutions generated were verified via a grid sensitivity study and validated by comparing with experimental data. When compared with experiments, results obtained for the flow rate of the gas ingested by the pump had relative errors less than 6\% and results obtained for the power consumed by the pump had relative errors less than 13\%.</div><div> </div><div> Results obtained show the shape of the liquid ring to play a dominant role in creating the expansion ratio or the vacuum needed to draw air into the pump through the suction port and the compression ratio needed to expel the air through the discharge ports. Results were generated to show how centrifugal force from rotation and how acceleration/deceleration from the difference in pressure at the pump's inlet and outlet along with the eccentricity of the impeller relative to the pump's housing affect the shape of the liquid ring. Results were also generated to show how the rotational speed of the impeller and the pressure at the suction port affect the nature of the gas and liquid flow in the pump and the pump’s effectiveness in creating a vacuum. </div><div> </div><div> With the knowledge gained from the CFD study, a physics-based reduced-order model was developed to predict air ingested and power consumed by the pump as well as the liquid ring shape and pressure of the gas and liquid in the pump as a function of design and operating parameters. This model was developed by recognising and demonstrating that the amount of air ingested and power consumed by the pump is strongly dependent on the shape and location of the liquid ring surface. The flow rates of the gas ingested by the pump and the power consumed by the pump predicted by the model were compared with experimental data and relative errors were less than 12\% and 17\% respectively.</div>

Page generated in 0.0382 seconds