• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • Tagged with
  • 12
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gas6 Alters Mammary Gland Development And Breast Cancer Progression

January 2016 (has links)
1 / Courtney Rose Standlee RS MPH PhD
2

Macrophages in Breast Cancer Progression

January 2017 (has links)
acase@tulane.edu / 1 / Emily Carron
3

Rôle de la protéine Gas6 et des cellules précurseurs dans la stéatohépatite et la fibrose hépatique

Fourcot, Agnès 04 October 2010 (has links)
Pas de résumé français / Pas de résumé anglais
4

Expression de la protéine Gas6 chez le rat Sprague-Dawley : effet de l'apport alimentaire de vitamine K à différents âges

Lavoie, Marie-Ève January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
5

The Role of Growth Arrest Specific 6 and Axl Signaling in Skeletal Muscle Regeneration

Matsumura, Marc Shigeru 05 December 2019 (has links)
Skeletal muscle regeneration is a critical process that replaces damaged muscle fibers with new fibers. The regenerative process can be segmented into four main phases: necrosis, inflammation, regeneration, and maturation. While many of the key signaling molecules are known and characterized, there are still gaps in our understanding of how this process is regulated. While it is reported that growth arrest specific 6 (Gas6) and its receptor Axl are expressed in mature muscle tissue, nothing is known about the effect that Gas6 and Axl have on regulating skeletal muscle regeneration. In this study we investigated the regenerative process in a Gas6/Axl double knockout (dKO) mouse model. The tibialis anterior (TA) muscle was chemically injured with BaCl2 and allowed to recover for 3, 7, or 14 days. We investigated satellite cell (SC) activation and muscle growth. We found that the dKO injured muscle has fewer SCs at 3-days post-injury, but the percentage of mitotically active SCs were no different between WT and dKO injured muscle. Interestingly, basal and injured dKO muscle has an increased cross-sectional area compared to wild type in male mice. Together this may suggest that in the absence of Gas6/Axl signaling may lead to impaired regeneration and compensatory fiber hypertrophy. The mechanism behind the hypertrophy remains unknown, but ultimately our findings suggest that Gas6/Axl signaling has an effect on skeletal muscle regeneration.
6

RAGE and Gas6/Axl Signaling in Obstetric Complications

Hirschi Budge, Kelsey May 27 March 2020 (has links)
Current research spans a wide range of objectives whose diversity includes the understanding of global epidemiology and the detailing of molecular interactions leading to specific pathologies. This work aligns more closely with the goal of mechanistic clarity by elucidating several aspects of signaling pathways involved in inflammatory and obstetric pathologies. Prior research has confirmed the role of Receptors for Advanced Glycation End-Products (RAGE) activation in signaling leading to chronic inflammation such as that observed in chronic obstructive pulmonary disease (COPD). RAGE activation has also been identified in other disease states including diabetes, Alzheimer’s disease, osteoarthritis, and cancers. We examined the role of RAGE in the obstetric complication intrauterine growth restriction (IUGR) wherein fetal development is delayed and infants are born at low birthweight. Exposure to tobacco smoke is known to activate RAGE, and smoke exposure also increases risk for IUGR. We confirm a role for RAGE signaling in development of IUGR. RAGE inhibition by semi-synthetic glycosaminoglycan ethers (SAGEs) significantly improved fetal and placental weights and reduced inflammatory signaling molecules. Interactions between RAGE and other signaling pathways have been noted in several research endeavors, and we sought to further understand signaling interactions specifically in obstetric pathologies by examining relationships between RAGE and Gas6/AXL signaling. We confirm that RAGE and Gas6/AXL signaling are not independent. Using tobacco smoke as a means of inducing RAGE, we determined that total AXL is inhibited when RAGE is active, but that phosphorylated AXL is increased. Inhibition of RAGE also increased Gas6 expression. These interactions require further clarification, but provide a foundation to expand upon. We further studied interactions within the Gas6/AXL pathway independent of RAGE. High levels of Gas6 have been noted in the serum of some women with preeclampsia, and early diagnosis and treatment of preeclampsia are currently limited. We demonstrate that, in a rat model, administration of Gas6 during pregnancy is sufficient to induce symptoms of preeclampsia including high blood pressure, increased proteinuria, and decreased trophoblast invasion. This provides a novel model which will further both diagnosis and treatment of preeclampsia. We also demonstrated that trophoblast invasion is influenced in a cell-type dependent manner by Gas6 and mTOR signaling, with decreased trophoblast invasion when Gas6 is high in trophoblast cells, but increased invasion with high Gas6 in a pulmonary adenocarcinoma cell type and in oral squamous cell carcinoma cells. Our work has clarified details of both RAGE and Gas6/AXL signaling that are crucial to further study of the pathways in which they are active, and the pathologies resulting from signaling misregulation.
7

Etude des mécanismes extracellulaires régulant la fonction du récepteur MerTK au cours de la phagocytose rétinienne / Analysis of extracellular mechanisms regulating MerTK function during retinal phagocytosis

Parinot, Célia 22 September 2015 (has links)
Le récepteur MerTK est impliqué dans la phagocytose des segments externes des photorécepteurs (SEP) par l'épithélium pigmentaire rétinien (EPR), fonction cruciale pour la survie des photorécepteurs et la vision. Dans la rétine, ces deux tissus sont en contact permanent et la phagocytose ne survient qu'une fois par jour, cette fonction nécessite donc d'être contrôlée précisément. Le pic de phagocytose est lié à l'activation intracellulaire de MerTK via l'intégrine αvβ5. Ce projet a eu pour but d'étudier les mécanismes extracellulaires régulant la fonction de MerTK au cours de cette phagocytose.Nous avons montré que MerTK est clivé à la surface des cellules d'EPR in vivo avant et après le pic de phagocytose. Ceci permettrait d'éviter une phagocytose trop prononcée des SEP.Nous avons démontré le rôle opposé des ligands de MerTK, spécifique à l'EPR. Gas6 semble inhibiteur, il stimule le clivage de MerTK et inhibe la phagocytose in vitro, et son expression in vivo est faible au moment du pic de phagocytose. Au contraire, Protéine S, dont l'expression augmente in vivo au moment du pic, inhibe le clivage de MerTK et stimule la phagocytose in vitro, et pourrait ainsi potentialiser cette fonction.Parmi les protéases étudiées, l'inhibition d'ADAM17 in vitro engendre une diminution du clivage de MerTK corrélée à une augmentation de sa biodisponibilité à la surface cellulaire et de son activité. Cependant, cet effet n'étant pas total, l'implication d'une autre protéase n'est pas exclue.Ainsi, mes travaux de Doctorat permettent de mieux comprendre la régulation complexe de l'activité de MerTK dans la phagocytose rétinienne, essentielle pour le rythme circadien de cette fonction. / The MerTK receptor is involved in the daily phagocytosis of photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE), an indispensable process for photoreceptors survival and vision. In the retina, the contact between POS and RPE is permanent, and POS phagocytosis occurs once a day, requiring a precise control of this function. The phagocytic peak is initiated by activation of MerTK via the αvβ5 integrin receptor. This project aimed at studying extracellular mechanisms that control MerTK function during POS phagocytosis. We have shown that MerTK can be cleaved from the RPE cell surface in vivo before and just after the phagocytic peak. This process might avoid an excess of POS phagocytosis. We have also shown the opposite role of MerTK ligands, specific to RPE cells. Gas6 appears to act as an inhibitor as it stimulates MerTK cleavage and inhibits POS phagocytosis in vitro. Moreover, in vivo, Gas6 expression is weak at peak phagocytosis time. In contrast, Protein S, which in vivo expression increases at the time of the phagocytic peak, inhibits MerTK cleavage and stimulates POS phagocytosis in vitro, and thus might potentiate phagocytosis. Among the protease candidates we studied, in vitro inhibition of ADAM17 results in decreased MerTK cleavage associated with the increase of full-length receptors available at cell surface and of MerTK activation. However, as cleavage still occurs in these conditions, we cannot exclude the implication of another protease. Taken together, my PhD data allows us to better understand the complex regulation of MerTK activity during retinal phagocytosis, which is essential for the circadian rhythm of this function.
8

Nuclear Receptors License Phagocytosis in Mouse Models of Alzheimer's Disease

Savage, Julie C. 04 September 2015 (has links)
No description available.
9

Rôle de la protéine Gas6 et des cellules précurseurs dans la stéatohépatite et la fibrose hépatique

Fourcot, Agnès 04 October 2010 (has links) (PDF)
Pas de résumé français
10

Rôle de GAS6 et de son récepteur AXL dans la dérégulation de l’homéostasie glucidique et le développement de l’insulino-résistance

Schott, Céline 04 1900 (has links)
Les maladies métaboliques ont pris une ampleur considérable dans le monde ces dernières décennies, telle que certains parlent à ce jour de pandémie. Le diabète de type 2 est l’une de celles qui progressent avec la plus importante prévalence. L'un des facteurs à l’origine du développement de cette physiopathologie est l’insulino-résistance. Il s'agit d'une altération de la réponse à l’insuline des tissus cibles tels que le muscle squelettique, le tissu adipeux et le foie, induisant une dérégulation de l'homéostasie du glucose. Les tissus sensibles deviennent incapables, entre autres, d'absorber adéquatement le glucose sanguin conduisant ainsi à l’établissement d’une hyperglycémie chronique. Les travaux présentés dans cette thèse ont pour objectif de caractériser le rôle de la protéine Growth-arrest specific 6 (GAS6) dans la dérégulation de l’équilibre glycémique et le développement de la résistance à l’insuline. GAS6 est une protéine γ-carboxylée sécrétée qui agit comme ligand pour la famille des récepteurs tyrosines kinases TAM comprenant : TYRO3, AXL et MERTK. GAS6 et ses récepteurs jouent un rôle essentiel dans le système immunitaire, la progression tumorale et les métastases cancéreuses. Cependant, des études récentes menées chez l’humain ont montré que les niveaux circulants de GAS6 ou des variations dans le gène GAS6 sont associés à l’hyperglycémie, la résistance à l'insuline et le risque de développer le diabète de type 2. Cependant, le mécanisme par lequel GAS6 influence ces désordres métaboliques reste méconnu. Dans une première étude, nous avons évalué, pour la première fois dans une cohorte de femmes canadiennes, la corrélation éventuelle entre les niveaux circulants de GAS6 et des facteurs de risque liés au diabète. Cette cohorte nommée MONET (Montréal and Ottawa New Emerging Team) est constituée de 126 femmes post-ménopausées, en surpoids ou obèses. Ces femmes ne sont pas diabétiques, mais présentent un risque plus élevé de développer la maladie à cause de leur poids et de leur statut sédentaire. Nous avons constaté que les femmes ayant des taux élevés de GAS6 dans le sang ont une tolérance au glucose significativement plus faible que celles avec des niveaux plus faibles de GAS6. Par ailleurs, certains paramètres de dysfonctionnements hépatiques (AST, ALT) et des marqueurs d’inflammation (IL-6) concordent positivement avec des taux élevés de GAS6. Nos résultats suggèrent que GAS6 pourrait être un biomarqueur de l’intolérance au glucose chez des patientes obèses et qu’il pourrait être associé à l’inflammation et à certains problèmes hépatiques, qui sont des facteurs impliqués dans le développement du diabète. Dans une seconde étude, à l’aide de modèles murins modifiés génétiquement, nous avons pu démontrer que la délétion du gène Gas6 est suffisante pour améliorer la sensibilité à l’insuline et la tolérance au glucose, sans affecter la sécrétion d’insuline. Par ailleurs, les souris déficientes pour GAS6 sont protégées contre la résistance à l'insuline induite par un régime alimentaire riche en graisses et en sucres. À l’inverse, l'augmentation in vivo des taux circulants de GAS6 est suffisante pour réduire la sensibilité à l'insuline. L'analyse de l'expression génique des récepteurs TAM dans les tissus sensibles à l’insuline a révélé qu’Axl est fortement exprimé dans le muscle squelettique. Dans une lignée de cellules musculaires, nous avons démontré que la voie de signalisation de GAS6-AXL affecte la réponse à l'insuline en inhibant la phosphorylation du récepteur de l'insuline (RI) et de son effecteur en aval AKT. Mécaniquement, AXL s'hétérodimérise avec le RI et GAS6 reprogramme les voies de signalisation en aval du RI dans les cellules musculaires. Il en résulte une activation accrue de la voie des Rab, notamment Rab7 induisant une internalisation de RI. Ensemble, ces résultats décrivent le mécanisme cellulaire par lequel GAS6 et AXL influencent la sensibilité à l'insuline. Finalement, nos derniers résultats soulignent un autre mécanisme d’action de GAS6 sur le métabolisme des cellules musculaires. Nous avons démontré, par protéomique, que GAS6 augmente significativement les niveaux protéiques de plusieurs enzymes impliquées dans la glycolyse et la production de lactate. Le profil métabolique des cellules musculaires traitées avec GAS6 démontre une augmentation du niveau de la glycolyse anaérobique et de la production de lactate. Par ailleurs, nos résultats suggèrent que le lactate lui-même induit une inhibition de la phosphorylation du RI en réponse à l’insuline. Ainsi, GAS6, en reprogrammant les voies métaboliques et l’utilisation du glucose des cellules musculaires, favoriserait la production de lactate induisant une diminution de la sensibilité à l'insuline. / Metabolic diseases have taken on a considerable scale in the world in recent decades, such that some speak of a pandemic. Type 2 diabetes is one of those diseases that progress with the highest prevalence. One of the factors behind the development of this pathophysiology is insulin resistance. It is an alteration of the insulin response of targeted tissues such as skeletal muscle, adipose tissue and liver, inducing dysregulation of glucose homeostasis. Sensitive tissues become incapable, among other things, of adequately absorbing blood glucose, thus leading to the establishment of chronic hyperglycemia. The work presented in this thesis focuses on characterizing the role of Growth-arrest specific protein 6 (GAS6) in the dysregulation of glycemic balance and the development of insulin resistance. GAS6 is a secreted γ-carboxylated protein that acts as a ligand for the TAM family of receptor tyrosine kinases including: TYRO3, AXL and MERTK. GAS6 and its receptors play an essential role in the immune system, tumor progression and cancer metastasis. However, recent studies in humans have shown that circulating GAS6 levels or variations in GAS6 gene are associated with hyperglycemia, insulin resistance and the risk of developing type 2 diabetes. However, the mechanism by which GAS6 influences these metabolic disorders remains unknown. In a first study, carried out for the first time in a cohort of Canadian women, we evaluated the potential correlation between circulating GAS6 levels and risk factors linked to diabetes. This cohort, named MONET (Montreal and Ottawa New Emerging Team), is composed of 126 post-menopausal, overweight or obese women. These women are not diabetic but have high risks of developing the disease because of their weight and sedentary status. We found that women with high levels of GAS6 in the blood have significantly lower glucose tolerance than those with lower levels of GAS6. In addition, certain liver dysfunction parameters (AST, ALT) and inflammation markers (IL-6) positively correlated with high levels of GAS6. Our results suggest that GAS6 could be a biomarker of glucose intolerance in obese patients and be associated with inflammation and certain liver problems, which are factors involved in the development of diabetes.  In a second study, using genetically modified mouse models, we were able to demonstrate that deletion of the Gas6 gene was sufficient to improve insulin sensitivity and glucose tolerance, without affecting insulin secretion. Furthermore, GAS6-deficient mice were protected against insulin resistance induced by a diet high in fats and sugars. Conversely, in vivo, increase of GAS6 circulating levels is sufficient to reduce insulin sensitivity. Analysis of TAM receptors gene expression in insulin-responsive tissues revealed that Axl is highly expressed in skeletal muscle. In a muscle cell line, we demonstrated that the GAS6-AXL signaling pathway affects the insulin response by inhibiting the phosphorylation of the insulin receptor (IR) and its downstream effector AKT. Mechanistically, AXL heterodimerizes with IR and GAS6 reprograms signaling pathways downstream of IR in muscle cells. This results in an increased activation of the Rab pathway, in particular Rab7, inducing an internalization of IR. Together, these results describe the cellular mechanism by which GAS6 and AXL influence insulin sensitivity. Finally, our latest results highlight another mechanism of action of GAS6 on muscle cell metabolism. We demonstrated by proteomics that GAS6 significantly increases the protein levels of several enzymes involved in glycolysis and lactate production. The metabolic profile of muscle cells treated with GAS6 demonstrates an increase in the level of anaerobic glycolysis and lactate production. Furthermore, our results suggest that lactate itself induces an inhibition of IR phosphorylation in response to insulin. Thus, GAS6, by reprogramming the metabolic pathways and the use of glucose in muscle cells, would promote lactate production inducing a decrease in insulin sensitivity.

Page generated in 0.0406 seconds