• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 3
  • Tagged with
  • 15
  • 14
  • 12
  • 9
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthese und Charakterisierung neuer metall-organischer Gerüststrukturen zur Anwendung in der enantioselektiven Katalyse und Gasspeicherung: Synthese und Charakterisierung neuer metall-organischer Gerüststrukturen zur Anwendung in der enantioselektiven Katalyse und Gasspeicherung

Hauptvogel, Ines Maria 17 October 2012 (has links)
Zielstellung der durchgeführten Arbeiten war die Entwicklung neuer hochporöser metall-organischer Gerüststrukturen (engl.: metal-organic frameworks, MOFs) durch die Verwendung aufgeweiteter Linkermoleküle. Hierfür wurden verschiedene Synthesestrategien verfolgt. Zum einen wurde die Ausbildung von Layer-Pillar-Strukturen auf der Basis von Anthracen-Linkern genutzt, um poröse und sehr stabile metall-organische Gerüstverbindungen darzustellen. Außerdem wurden aufgeweitete trigonale Linkermoleküle bzw. eine Kombination von bi- und tridentaten Liganden verwendet, um hochporöse Koordinationspolymere zu synthetisieren. Zudem wurde die Synthese chiraler poröser Koordinationspolymere durch die Nutzung des modifizierten TADDOL-Katalysators als chirale organische Komponente verfolgt, um somit einen heterogenen Katalysator für die enantioselektive Katalyse zu gewinnen. Im Rahmen der vorliegenden Arbeit konnten die verschiedenen Synthesestrategien erfolgreich angewendet werden. Durch die Umsetzung des bidentaten Linkers 4,4´-Anthracen-9,10-diyldibenzoesäure und dem Säulenliganden 1,4-Diazabicyclo[2.2.2]octan (Dabco) mit verschiedenen Metallsalzen konnte eine neue Reihe isotyper, poröser Layer-Pillar-Verbindungen (DUT-30, DUT = Dresden University of Technology) mit einer sehr guten Stabilität gegenüber Luft und Feuchtigkeit dargestellt werden. Die Strukturen zeigen eine äußerst hohe Flexibilität, sodass sieben verschiedene Phasen der Verbindungen gefunden werden konnten. Dadurch sind diese Materialien prädestiniert zur Entfernung von Schadstoffen, wie z.B. organischen Lösungsmitteldämpfen, aus der Luft. Auch die Verwendung von trigonalen Linkern kann zur Synthese hochporöse Koordinationspolymere genutzt werden. Dies wurde anhand des Linkers 1,3,5-Tri-(4´-carboxy(1,1´-biphenyl)-4-yl)benzen erprobt. Die Umsetzung des Linkers mit Zinknitrat bzw. Cobaltnitrat führte zu den hexagonalen Schichtstrukturen DUT-40 und DUT-44. DUT-43 besteht ebenfalls aus einer derartigen hexagonalen Schichtstruktur, wobei hier jedoch die Verwendung von 4,4´-Biphenyldicarbonsäure als Co-Linker eine teilweise Verknüpfung der Schichten ermöglicht. Außerdem konnte durch die Umsetzung des tridentaten Linkers mit Kupfernitrat die Struktur von DUT-54 gebildet werden. In dieser liegen eindimensionale Stränge vor, wobei es zu einer gegenseitigen Durchdringung kommt und damit eine dreidimensionale Kanalstruktur entsteht. Eine weitere Synthesestrategie zur Erzeugung hochporöser Materialien nutzt die Verwendung von Co-Linkern für die Erzeugung der Koordinationspolymere. Hier war in der Vergangenheit vor allem die Kombination von bi- und tridentaten Linkern erfolgreich. Nutzt man als bidentaten Vertreter 9,10-Anthracendicarbonsäure, so eignet sich 4,4´,4´´-Benzen-1,3,5-triyltribenzoesäure als tridentater Co-Linker. Die solvothermale Umsetzung der beiden Linker in verschiedenen Lösungsmittelgemischen führte zu zwei neuen porösen Kooordinationspolymeren, welche beide Linkerarten enthalten. Um jedoch gezielt ein hochporöses und stabiles Material erzeugen zu können wurde eine Struktur simuliert, welche isoretikulär zu der bekannten Struktur DUT-6 ist, welche ebenfalls nach dem Prinzip der Kombination von bi- und tridentaten Liganden dargestellt wurde. Die zu erzeugende Struktur beruht auf dem tridentaten Linker 1,3,5-Tri-(4´-carboxy-(1,1´-biphenyl)-4-yl)-benzen und dem bidentaten Linker 1,4-Bi-p-carboxyphenylbuta-1,3-dien, welcher exakt die richtige Länge aufweist, um in diese Struktur eingebaut zu werden. Die Umsetzung von basischem Zinkacetat mit einem Gemisch der beiden Linker führte zu der zuvor simulierten Struktur. Für diese Verbindung, DUT-60, konnte eine spezifische Oberfläche von 6500 m2g-1 und ein Porenvolumen von 3.5 cm3g-1 berechnet werden, welche zu den höchsten jemals für poröse Koordinationspolymere ermittelten Werte gezählt werden können. Ein weiterer Bereich der vorliegenden Arbeit galt der Entwicklung eines neuen chiralen und porösen Koordinationspolymers, welches in der heterogenen enantioselektiven Katalyse eingesetzt werden kann. Dafür wurde der aus der homogenen Katalyse bekannte TADDOL-Linker modifiziert. Durch die solvothermale Umsetzung dieses Linkers mit Zinknitrat konnte die Verbindung DUT-39 erhalten werden. Diese zeigt hervorragende Werte bezüglich ihres Adsorptionsverhaltens für verschiedene Gase und zählt somit zu den chiralen, metall-organischen Gerüstverbindungen mit den höchsten Porositäten. Außerdem zeigt die Verbindung eine hohe thermische Stabilität sowie eine gute Stabilität gegenüber Luftfeuchte, was sie zu einem attraktiven Kandidaten für die heterogene enantioselektive Katalyse macht.
12

Hochporöse und flexible metallorganische Gerüstverbindungen basierend auf Stickstoff-haltigen Carboxylat-Liganden

Grünker, Ronny 10 January 2013 (has links)
Metallorganische Gerüstverbindungen (engl.: Metal-organic Framework, MOFs) haben sich in den letzten Jahren neben Zeolithen, Aktivkohlen und anderen als eine weitere Klasse poröser Materialien etabliert. Die Möglichkeit des individuellen Designs von Eigenschaften wie Porengröße und -geometrie, innerer Oberfläche und Porenvolumen, der Hydrophilie und Funktionalität machen diese Materialklasse zum Gegenstand der Forschung in den vielfältigsten Gebieten. Darüber hinaus besitzen sie unter porösen Materialien exklusiv die Eigenschaft der definierten strukturellen Flexibilität, welche in Kombination mit bereits genannten Eigenschaften eine weitere Vielzahl an neuen möglichen Anwendungen erahnen lässt. Die Faszination dieser strukturellen Flexibilität von MOFs sowie die Möglichkeit der Kontrolle dieser Eigenschaft sollten im Fokus der Betrachtung stehen. Zur Integration von Flexibilität in dreidimensionale Netzwerke wurde als Strategie der Einsatz von semi-flexiblen Linkermolekülen gewählt. Eine potentielle Molekülklasse für diese Art der Untersuchung stellen Triarylaminverbindungen dar, da sie trotz ihrer durchgängigen sp2-Hybridisierung über ein gewisses Maß an konformeller Flexibilität verfügen. So wurde über einen präparativ sehr guten Zugang der tetrafunktionelle H4benztb-Linker (Abbildung 1a) generiert. Durch die Kombination dieser Tetracarbonsäure mit Metall-Clustern unterschiedlicher Konnektivität resultierten acht strukturell unterschiedliche MOFs, wodurch an diesen Verbindungen Aussagen über Struktur-Eigenschafts-Beziehungen getroffen werden können. Ein weiterer Schwerpunkt dieser Arbeit war die kostengünstige Darstellung komplexer nicht-kommerzieller Liganden und daraus resultierende hochporöse MOFs sowie Untersuchungen zu deren Stabilität und Speicherkapazität für verschiedene Gase im Hochdruckbereich. Durch die Reaktion des H4benztb-Liganden mit Zinknitrat unter variierenden Synthesebedingungen konnten drei Netzwerke unterschiedlich hoher Konnektivität erhalten werden. DUT 10(Zn) (Zn2(benztb)2(H2O)2), basierend auf dem vierfach verknüpfenden dimeren Schaufelrad-Konnektor, zeigt mit einem (4,4)-Netzwerk dabei den geringsten Verzweigungsgrad. Daraus resultierend zeigt dieses Material eine sehr große strukturelle Flexibilität beim Entfernen des in den Poren vorliegenden Lösungsmittels sowie bei der Adsorption von CO2 bei -78°C bis 1 bar. Wird die Netzwerkkonnektivität durch den Einsatz eines sechsfach verknüpfenden [Zn4O]6+-Clusters erhöht, so zeigt das resultierende (4,6)-Netzwerk von DUT-13 (Zn4O(benztb)3/2) eine größere strukturelle Stabilität beim Entfernen des Lösunsgmittels sowie bei der Adsorption von Gastmolekülen im überkritischen Zustand. Für gasförmige Adsorptive zeigt das Netzwerk bei der Adsorption ein hochgradig flexibles Verhalten. Im Fall von N2 konnte über in situ-PXRD-Physisorptionsmessungen eine bislang noch nie beobachtete kristallin-amorph-kristallin-amorph-Transformation während eines Physisorptionszyklus beobachtet werden, was zeigt, dass DUT-13 über ein sog. Formgedächtnis verfügt und nach einer Amorphisierung erneut in seine ursprüngliche kristalline Form zurückkehrt. Neben der Erhöhung der Netzwerkkonnektivität wurde auch der Einfluss der partiellen Substitution des semi-flexiblen H4benztb gegen rigide Linker auf die Netzwerkflexibilität untersucht. Durch die Copolymerisationsstrategie des H4benztb mit der starren 1,3,5-Benzentribenzoesäure (H3btb) konnte DUT 25 (Zn4O(btb)2/3(benztb)) erhalten werden. Aufgrund der geringen Erhöhung der Rigidität der Verbindung zeigt dieses (3,4,6)-Netzwerk keinerlei strukturelle Flexibilität während der Aktivierung, der Adsorption von verschiedenen Gasen sowie von Gastmolekülen aus der Flüssigphase. Man erhält ein starres Material mit einer spezifischen inneren Oberfläche (SSA) von 4670 m2g-1 und einem totalen Porenvolumen (VP) von 2.22 cm3g-1. Aufbauend auf den positiven Ergebnissen der Copolymerisationsstrategie von DUT-25, wurde versucht, diese auf weitere kostengünstige Linkersysteme zur Synthese hochporöser MOF-Verbindungen auszuweiten. Durch eine effiziente und günstige Synthese einer Tricarbonsäure auf Amidbasis, 4,4´,4´´-[1,3,5-Benzentriyltris(carbonylimino)]trisbenzoesäure (H3btctb), und deren Kombination mit der linearen 4,4´-Biphenyldicarbonsäure (H2bpdc) und Zinknitrat wurde ein neues mesoporöses Koordinationspolymer DUT-32 (Zn4O(btctb)4/3(bpdc)) mit hierarchischem Porensystem erhalten. Dieses System konnte nur unter Zuhilfenahme von überkritischem CO2 in einen porösen lösungsmittelfreien Zustand überführt werden. Hierbei konnten die gravierenden Einflüsse verschiedener Parameter während der Trocknung (Lösungsmittel, Verweilzeit) auf die porösen Eigenschaften des resultierenden Materials aufgezeigt werden. Der Austausch des Reaktionslösungsmittels gegen Ethanolabs. und anschließende überkritische Trocknung führte zu einem amorphen porösen Material mit einem Typ-IV-N2-Isothermenverlauf und einer daraus berechneten spezifischen Oberfläche von 840 m2g-1, einem Mikroporen- sowie einem totalen Porenvolumen von 0.36 bzw. 2.91 cm3g-1. Erfolgt die Trocknung aus einem Lösungsmittel mit möglichst geringen Wechselwirkungen mit dem Netzwerk (Aceton, Amylacetat), so zeigt das resultierende kristalline Material nach einer CO2-Austauschzeit von drei Tagen gänzlich andere texturelle Eigenschaften mit einem Typ-I-N2-Isothermenverlauf, einer spezifischen Oberfläche von 5080 m2g-1 sowie einem totalen Porenvolumen von 2.27 cm3g-1. Wird diese Verweil- und damit die Austauschzeit im flüssigen CO2 weiter auf sieben Tage erhöht, steigt auch die Qualität/Porosität des Materials und man erhält eine Verbindung mit der bislang höchsten beschriebenen spezifischen Oberfläche (SSA = 7192 m2g-1), extrem hohem spezifischen Porenvolumen (VP = 3.16 cm3g-1) und hervorragenden Eigenschaften für die Gasspeicherung.:INHALTSVERZEICHNIS I VERWENDETE ABKÜRZUNGEN V THEORETISCHER TEIL 1 1 Einleitung und Motivation 1 2 Stand der Forschung 5 2.1 Flexibilität in Metallorganischen Gerüsten 5 2.2 Metallorganische Gerüstverbindungen und deren Anwendung in der Gasspeicherung 10 2.3 Optische Eigenschaften metallorganischer Netzwerke 19 3 Charakterisierungsmethoden 25 3.1 Adsorption 25 3.1.1 Niederdruckphysisorption (p ≤ 1 bar) 25 3.1.1 Hochdruckphysisorption 30 EXPERIMENTELLER TEIL 36 4 Allgemeine Angaben 37 4.1 Analytik 37 4.2 Sonstiges 43 4.2.1 Chemikalien und Lösungsmittel 43 5 Linkersynthesen 45 5.1 Synthese der Tetrabenzoesäure H4benztb 2 45 5.2 Amidierung zur Tricarbonsäure H3btctb 3 48 5.3 Aminbasierte Tricarbonsäure H3tcbpa 6 49 5.4 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Tetracarbonsäure 8 52 5.5 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Tetrakistetrazol 10 54 5.6 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Tetracarbonsäure 12 56 5.7 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Tetracarbonsäure 14 58 5.8 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Tetracarbonsäure 16 60 5.9 Erweiterung des aminbasierten Linker-Prinzips durch Buchwald-Hartwig Kupplung: Hexacarbonsäure 18 62 5.10 Erweiterung des amidbasierten Linker-Prinzips: Trisindazol 19 64 5.11 Synthese eines trigonalen Metalloliganden 22 65 5.12 Synthese von linearen Disäuren 69 5.13 Synthese von linearen N-Donor-Liganden 73 6 Synthesen der metallorganischen Gerüstverbindungen 80 6.1 M2(benztb)(H2O)2 (M=Zn, Cu, Co; DUT-10(M)) 80 6.1.1 Zn2(benztb)(H2O)2 (DUT-10(Zn)) 80 6.1.2 Cu2(benztb)(H2O)2 (DUT-10(Cu)) 80 6.1.3 Co2(benztb)(H2O)2 (DUT-10(Co)) 81 6.1.4 Zn2(benztb)(H2O)2 (DUT-11) 81 6.1.5 Cu2(benztb)(H2O)2 (DUT-12) 82 6.2 Weitere benztb-basierende Gerüstverbindungen 82 6.2.1 Zn4O(benztb)3/2 (DUT-13) 82 6.2.2 Strukturell unaufgeklärte zinkbasierende benztb-Phase 84 6.2.3 Zn4O(benztb)(btb)2/3(DEF)16(H2O)7/2 (DUT-25) 84 6.2.4 [Co3(benztb)2×2[(R1)(R2)]4N+] (DUT-26) (R1 = R2 = Me; R1 = Me, R2 = H) 85 6.2.1 Co9O3(DMF)6(L)(benztb)3 (L = DMF/H2O) (DUT-66) 87 6.3 MOFs auf Basis des Triamid-Linkers H3btctb 88 6.3.1 Cu3(btctb)2(H2O)3 (DUT-31) 88 6.3.2 Cu2(btctb)4/3(bpta) 88 6.3.3 Zn4O(bpdc)(btctb)4/3 (DUT-32) 89 6.4 MOFs auf Basis des Triarylamin-Linkers H3tcbpa 90 6.4.1 Cu3(tcbpa)2(H2O)3 (DUT-63) 90 6.4.2 Cu2(tcbpa)4/3(bpta) (DUT-64) 91 7 Auswertung und Diskussion 92 7.1 Linkersynthesen 92 7.2 Strukturelle Vielfalt von metallorganischen Gerüstverbindungen basierend auf Metalldimer-baueinheiten und H4benztb 96 7.2.1 Kristallstrukturbeschreibung von DUT-10 (M2(benztb)(H2O)2; M = Zn, Cu, Co) 96 7.2.2 Kristallstrukturbeschreibung von DUT-11 (Zn2(benztb)(H2O)2) 99 7.2.3 Kristallstrukturbeschreibung von DUT-12 (Cu2(benztb)(H2O)2) 100 7.2.4 Physisorption an DUT-10(Zn) und DUT-12 102 7.2.5 Optische Eigenschaften von DUT-10(Zn) 108 7.2.6 Zusammenfassung zu benztb-basierenden MOFs mit Schaufelrad-Motiv 109 7.3 Austausch des Konnektors und dessen Auswirkungen auf die strukturellen und adsorptiven Eigenschaften 111 7.3.1 Kristallstrukturbeschreibung von DUT-13 (Zn4O(benztb)3/2) 111 7.3.2 Physisorption von Gasen an DUT-13 113 7.3.3 Physisorption von überkritischen Adsorptiven an DUT-13 120 7.3.4 Zusammenfassung 121 7.4 Weitere Metallorganische Gerüstverbindungen auf Basis von benztb 123 7.4.1 Kristallstrukturbeschreibung von DUT-26 [Co3(benztb)2]2-×2[(R1)(R2)]4N+] (R1 = R2 = Me; R1 = Me, R2 = H) 123 7.4.2 Physisorptionsdaten DUT-26 125 7.4.3 Experimente zur dynamischen kinetischen Racematspaltung (DKR) an DUT-26 127 7.4.4 Kristallstrukturbeschreibung von DUT-66 [Co9O3(DMF)6(L)(benztb)3] (L = DMF/H2O) 130 7.4.5 Charakterisierung einer strukturell unaufgeklärten Zink-basierenden benztb-Phase 132 7.4.6 Zusammenfassung 136 7.5 Koordinations-Copolymerisation als Möglichkeit der Stabilisierung hochporöser MOFs 137 7.5.1 Kristallstrukturbeschreibung von DUT-25 (Zn4O(btb)2/3(benztb)) 137 7.5.2 Adsorptionseigenschaften von DUT-25 140 7.5.3 Optische Eigenschaften von DUT-25 144 7.5.4 Ausweitung des Copolymerisationskonzeptes: DUT-25-Analoga 146 7.5.5 Kristallstrukturbeschreibung von DUT-32 (Zn4O(btctb)4/3(bpdc)) 148 7.5.6 Weiterführende Charakterisierung von DUT-32 150 7.5.7 Einsatz von mesoporösen metallorganischen Gerüstverbindungen als Wirt für funktionelle Gastmoleküle und deren sensorische Eigenschaften 155 7.5.8 Zusammenfassung 163 7.6 Weitere metallorganische Gerüstverbindungen mit Amid-basierenden Linkern 165 7.6.1 Kristallstrukturbeschreibung von DUT-31 (Cu3(btctb)2(H2O)3) 165 7.6.2 Versuche zur Vermeidung der Verwebung und Stabilisierung der DUT-31-Struktur 167 7.6.3 Zusammenfassung 169 7.7 Metallorganische Gerüstverbindungen mit weiteren trigonalen Linker-Systemen 170 7.7.1 Kristallstrukturbeschreibung von DUT-63 (Cu3(tcbpa)2(H2O)3) 170 7.7.2 Kristallstrukturbeschreibung von DUT-64 (Cu2(tcbpa)4/3(bpta)) 172 7.7.3 Struktureller Vergleich von DUT-63 und DUT-64 174 7.7.4 Zusammenfassung 175 8 Zusammenfassung und Ausblick 176 ANHANG 180 LITERATURVERZEICHNIS 198
13

Thermodynamisches Verhalten von Erdgas, Wasserstoff und Erdgas-Wasserstoff-Mischgasen in Salzkavernen während der unterirdischen Speicherung

Keßler, Benjamin 01 February 2022 (has links)
In Deutschland wird das Thema der Energiewende mit voranschreitender Diskussion über Kohle- und Atomausstieg immer populärer und konkreter. Hierbei wird es immer wichtiger, die Erneuerbaren Energien in den Vordergrund zu rücken und diese effizienter zu nutzen. Ein zentrales Problem, welches gelöst werden muss, ist die Speicherung dieser Energie. Es muss zu jeder Zeit möglich sein den Energiebedarf zu decken, unabhängig davon, ob Wind- und Solaranlagen Strom liefern. Ein möglicher Ansatz ist, aus überschüssiger Wind- und Sonnenenergie über eine Elektrolyse Wasserstoff zu erzeugen und diesen dann in unterirdischen Strukturen wie z.B. Salzkavernen, Aquiferstrukturen oder ausgeförderte Öl- oder Gaslagerstätten zu speichern. In dieser Arbeit sollen die thermodynamischen und fluiddynamischen Strömungsvorgänge in Salzkavernen während der Umwidmung von Erdgas auf Wasserstoff untersucht und simuliert werden. Für die Umstellung eines Kavernenspeichers von Erdgas auf Wasserstoff wurden zwei Möglichkeiten identifiziert. Die erste Variante ist, das Kaverne befindliche Erdgas als Kissengas zu nutzen. Diese Variante bringt den Vorteil, dass das Kissengas als natürliche Hemmschwelle zwischen dem Kavernensumpf und Wasserstoff dient, was wiederum eine Schwefelwasserstoff – Bildung hemmt. Als zweite Umstellungsvariante könnte die Kaverne mit vollgesättigter Sole gefüllt werden, um das Erdgas vollständig fördern zu können. Anschließend kann Wasserstoff in die mit Sole gefüllte Kaverne injiziert werden. Für diese Umstellungsvariante ist es nötig, den Soleentleerungsstrang in die Bohrung einzubauen, wofür eine Workoveranlage vonnöten ist. Diese Variante bringt den Vorteil, dass eine reine Wasserstoffkaverne zur Verfügung steht und geringere Anforderungen an die Gasaufbereitung gestellt werden müssen:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis I 1. Einleitung 1 1.1 Aufgabenstellung 3 1.2 Bedeutung von Salzkavernen für die Speicherung 4 1.3 Stand der Technik 6 1.4 Aufbau der Arbeit 7 2. Eigenschaften von Methan, Wasserstoff und Methan – Wasserstoff – Mischgasen 9 2.1 Dichte 11 2.1.1 Methan 12 2.1.2 Wasserstoff 13 2.1.3 Methan – Wasserstoff – Mischgase 15 2.2 Realgasfaktor 15 2.2.1 Methan 16 2.2.2 Wasserstoff 17 2.2.3 Methan – Wasserstoff – Mischgase 18 2.3 Dynamische Viskosität 20 2.3.1 Methan 20 2.3.2 Wasserstoff 22 2.3.3 Methan – Wasserstoff – Mischgase 25 2.4 Spezifische Wärmekapazität und Isotropenexponent 27 2.4.1 Methan 27 2.4.2 Wasserstoff 29 2.4.3 Methan – Wasserstoff – Mischgase 30 2.5 Wärmeleitfähigkeit 30 2.5.1 Methan 30 2.5.2 Wasserstoff 32 2.5.3 Methan – Wasserstoff – Mischgase 33 2.6 Joule – Thomson – Koeffizient 34 2.6.1 Methan 34 2.6.2 Wasserstoff 36 2.6.3 Methan – Wasserstoff – Mischgase 36 2.7 Löslichkeit in salzhaltigem Wasser 36 2.7.1 Methan 36 2.7.2 Wasserstoff 39 2.7.3 Methan – Wasserstoff – Mischgase 39 2.8 Gegenüberstellung der Eigenschaften zwischen Erdgas, Wasserstoff und Erdgas – Wasserstoff – Mischgasen 40 2.8.1 Dichte 40 2.8.2 Realgasfaktor 41 2.8.3 Dynamische Viskosität 42 2.8.4 Spezifische Wärmekapazität 43 2.8.5 Wärmeleitfähigkeit 44 2.8.6 Joule – Thomson – Koeffizient 45 2.9 Zusammenfassung der genauesten Stoffgleichung 46 3. Physikalische Grundlagen 48 3.1.1 Wärmetransport 49 3.1.2 Konvektion 50 3.1.3 Diffusion 50 3.1.4 Charakterisierung von Strömungen 53 4. Auswertung der Stadtgas – Erfahrungen und Entwicklung von Gas – Mischungsreferenzfällen 57 4.1 Stadtgasspeicherung 57 4.2 Gasqualität und Gasqualitätsveränderungen während der Medienumstellung von Stadtgas auf Erdgas 58 4.2.1 Theoretische Betrachtungen der Stadtgas – Erdgas – Umstellung 59 4.2.2 Monitoring Umstellung der Kaverne LT 22 61 4.2.3 Umstellung weiterer Kavernen und die Entwicklung der Gasqualität in den Jahren 1997 bis 1998 63 4.2.4 Anwendbarkeit der Ergebnisse auf die Medienumstellung mit Wasserstoff 64 5. Entwicklung eines Simulationsmodells 65 5.1 Modellentwicklung 66 5.1.1 Modellkonzeption 66 5.1.2 Geometrie 68 5.1.3 Randbedingungen 69 5.1.4 Feuchteentwicklung bei der Gasspeicherung in Salzkavernen 70 5.1.5 Vernetzung 72 5.1.6 Beschreibung und Auswahl der verfügbaren Turbulenzmodule 75 5.1.7 Mathematische Beschreibung des verwendeten Turbulenzmoduls 79 6. Simulation der Medienumstellung 83 6.1 Umstellungsstrategien 83 6.2 Simulation der Injektionsphase für unterschiedliche Randbedingungen 84 6.2.1 Untersuchung des Einflusses der Eintrittsgeschwindigkeit 84 6.2.2 Untersuchung des Einflusses des Anfangsdrucks 88 6.2.3 Untersuchung des Einflusses der Temperaturverhältnisse der Gase 91 6.3 Simulation der Ruhephase 93 6.4 Simulation der Ausspeicherphase 97 6.5 Prognose der zu erwartenden Gasqualitäten 99 7. Zusammenfassung und Ausblick 101 Literaturverzeichnis 105 Abbildungsverzeichnis 111 Tabellenverzeichnis 115 Anlagenverzeichnis 116
14

Classification and repeatability studies of transient electromagnetic measurements with respect to the development of CO2-monitoring techniques

Bär, Matthias 09 February 2021 (has links)
The mitigation of greenhouse gases, like CO2 is a challenging aspect for our society. A strategy to hamper the constant emission of CO2 is utilizing carbon capture and storage technologies. CO2 is sequestrated in subsurface reservoirs. However, these reservoirs harbor the risk of leakage and appropriate geophysical monitoring methods are needed. A crucial aspect of monitoring is the assignment of measured data to certain events occurring. Especially if changes in the measured data are small, suitable statistical methods are needed. In this thesis, a new statistical workflow based on cluster analysis is proposed to detect similar transient electromagnetic signals. The similarity criteria dynamic time warping, the autoregressive distance, and the normalized root-mean-square distance are investigated and evaluated with respect to the classic Euclidean norm. The optimal number of clusters is determined using the gap statistic and visualized with multidimensional scaling. To validate the clustering results, silhouette values are used. The statistical workflow is applied to a synthetic data set, a long-term monitoring data set and a repeat measurement at a pilot CO2-sequestration site in Brooks, Alberta.
15

Investigations on the influence of pore structure and wettability on multiphase flow in porous medium using x-ray computed tomography: Application to underground CO2 storage and EOR

Zulfiqar, Bilal 28 May 2024 (has links)
Capillary trapping plays a central role in the geological storage of CO2, oil recovery, and water soil infiltration. The key aim of this study is to investigate the impact of surface properties (wettability, roughness, heterogeneous mineral composition) on the dynamics of quasi-static fluid displacement process and capillary trapping efficiency in porous medium. We concluded that for homogeneous wet smooth glass beads surfaces, a transition in fluid displacement pattern occurs from a compact (for θ < 90°; imbibition process) to a fractal front-pattern (for θ > 90°; drainage process) leading to a crossover in capillary trapping efficiency from zero to maximum. The impact of surface roughness on capillary trapping efficiency was also studied, and an opposite trends in terms of wettability dependency was observed. Rough natural sands surfaces depicts a non-monotonous wettability dependency, i.e. a transition from maximal trapping (for θ < 90°) to no-trapping occurs (at θ = 90°), followed by an increase to medium trapping (for θ > 90°). For a fractional-wet media, the percolating cluster of hydrophobic sediments (connected hydrophobic pathways) characterize the fluid displacement pattern and trapping efficiency.

Page generated in 0.0435 seconds