Spelling suggestions: "subject:"gazosiphon"" "subject:"gazosiphons""
1 |
Impact de l'agitation et de l'aération sur la réponse physiologique de Streptomyces pristinaespiralis DSMZ 40338 lors de sa culture en bioréacteurs mécaniquement agité et gazosiphon / Influence of agitation and aeration on the physiological behavior of Streptomyces pristinaespiralis DSMZ 40338 during cultures in stirred tank and airlift bioreactorsHaj-Husein, Laial 15 October 2013 (has links)
Des travaux préliminaires réalisés en fiole d'Erlenmeyer ont montré que l'environnement hydrodynamique, caractérisé par la puissance dissipée volumique (P/V) et le coefficient de transfert en oxygène (kLa), jouait un rôle important lors du procédé de production de pristinamycines par Streptomyces pristinaespiralis (Mehmood, 2011). L'objectif de ce travail est donc d'étudier l'influence de ces deux phénomènes dans des bioréacteurs mécaniquement agités (STR), largement utilisés à l'échelle industrielle, et de type gazosiphon. Dans un premier temps, une description de l'environnement hydrodynamique global a été réalisée en STR. En ce qui concerne le bioréacteur gazosiphon, celui-ci a été conçu et dimensionné spécifiquement pour ce travail. Une caractérisation des écoulements dans ce bioréacteur a ensuite été réalisée par simulation numérique des écoulements. En appliquant les mêmes conditions hydrodynamiques que celles étudiées lors de culture en fioles d'Erlenmeyer, les performances en terme de croissance et de production de pristinamycines ont toujours été moindres en STR et en gazosiphon qu'en fiole. Ceci démontre que P / V, kLa mais également la dissipation maximum, ne constituent pas les bons paramètres d'extrapolation. Par contre, les performances mesurées semblent être reliée aux variations de formes morphologiques observées (présence et taille des pelotes) et à la physiologie des cellules au sein de ces structures. De façon surprenante, au cours de ce travail, le déclenchement de la production de pristinamycines a quasiment toujours été obtenu lors de la phase de croissance de S. pristinaespiralis. Nos travaux n'ont pas permis de mettre en évidence la raison de ce phénomène. Celui-ci est certainement la conséquence de plusieurs paramètres qui restent encore à préciser / Previous results performed in Erlenmeyer flasks have shown that the hydrodynamics, characterized by power dissipation per unit of volume (P/V) and volumetric oxygen mass transfer coefficient (kLa), impacted the production of pristinamycins by Streptomyces pristinaespiralis (Mehmood, 2011). The aim of this work is then to study the influence of these two parameters in a stirred tank bioreactor (STR), widely used in industry, and in an airlift bioreactor. This last bioreactor has been designed specifically for this work. In a first part, the hydrodynamic environment was described in STR and the fluid flows were simulated by computational fluid dynamics (CFD). Using the same hydrodynamic conditions in STR and in airlift bioreactor than in flasks, the process performance (bacterial growth and pristinamycin production) were always lower in STR and airlift bioreactor. This demonstrates that P / V, kLa and also maximum dissipation were not pertinent scale-up criteria for the pristinamycin production from flask to STR or airlift bioreactor. On the contrary, the determined performances seemed to be related to the changes in bacterial morphology (presence and size of pellets) and to the physiology of the cells inside these structures. Surprisingly, during this work, the initiation of the pristinamycin production occurred almost always during the growth phase of S. pristinaespiralis. This phenomenon was probably due to the conjunction of several parameters which remain to identify
|
2 |
Simulation en présence d'incertitude d'un gazosiphon de grande échelle. Application à l'optimisation d'un nouveau système géothermique urbain / Simulation of a large-scale airlift pump taking into account uncertainties. Application to the optimization of a new urban geothermal systemMonmarson, Bastien 22 October 2015 (has links)
Cette thèse s’inscrit dans le cadre du projet ANR « Uncertain flow optimization » (UFO) consacré au développement et à l’application de méthodes efficaces de quantification d’incertitudes pour l’analyse et l’optimisation d’écoulements. Dans ce contexte, ces méthodes sont appliquées à des gazosiphons de grande échelle utilisés comme pompe. Plus particulièrement, on s’intéresse à de tels gazosiphons choisis pour constituer l’organe central d’un système géothermique innovant, compatible avec un environnement urbain. On souhaite en quantifier le potentiel énergétique par voie numérique avec la recherche d’un compromis entre justesse des résultats et efficacité optimale. La simulation de l’écoulement diphasique produit dans le gazosiphon est fondée sur un modèle quasi-1D à flux de dérive et s’appuie sur une démarche de résolution implicite. Les résultats sont validés sur les études expérimentales les plus pertinents de la littérature, dont aucune toutefois n’atteint les longueurs requises de l'ordre du kilomètre. Le code de simulation du gazosiphon fait ensuite l’objet d’une démarche de prise en compte d’incertitudes physiques et de modélisation, précédée par une analyse de deux méthodes de quantification d’incertitude : une méthode non-intrusive de type chaos polynomial, et une méthode plus récente dite semi-intrusive qui fut développée en amont du projet UFO. Cet outil est intégré dans une modélisation simplifiée du système géothermique urbain dans son ensemble impliquant les composants en surface, notamment le compresseur d'air. Il en résulte une optimisation énergétique robuste préliminaire de deux variantes du système géothermique urbain proposé, respectivement de récupération de chaleur et de production d’électricité. / This PhD thesis is part of the ANR project « Uncertain Flow Optimization » (UFO). The project is devoted to the development and application of efficient uncertainty quantification methods for flow analysis and optimization. In this framework, these methods are applied to the study of a large-scale airlift pump. The airlift pump is selected to be part of an innovative geothermal system, which can be exploited within an urban environment. We wish to quantify and optimize the energy potential of this new system with numerical tools. They provide both good accuracy and efficiency properties. The airlift two-phase flow simulation is based on a quasi one-dimensional drift flux model, which is implicitly solved. The solver is validated by comparison with relevant experimental airlift studies from the literature. However, these studies remain below the kilometric-targeted pipe length. Thanks to the analysis of two uncertainty quantification methods, a non-intrusive approach relying on polynomial chaos expansion and a new semi-intrusive method developed ahead of the UFO project, we perform airlift pump simulations taking into account physical and modelling uncertainties. This numerical tool is inserted into a simplified model of the complete urban geothermal system that involves surface devices, such as an air compressor. Finally, a robust preliminary optimization process is performed for two versions of the proposed geothermal urban system. They are designed respectively for heat recovery and electricity production.
|
Page generated in 0.0277 seconds