• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et conception d' architectures basées sur des mémoires à changement de phase / Characterization and design of architectures for phase-change memories based on alternative-to-GST materials

Kiouseloglou, Athanasios 17 December 2015 (has links)
Les mémoires à base de semi-conducteur sont indispensables pour les dispositifs électroniques actuels. La demande croissante pour des dispositifs mémoires fortement miniaturisées a entraîné le développement de mémoires non volatiles fiables qui sont utilisées dans des systèmes informatiques pour le stockage de données et qui sont capables d'atteindre des débits de données élevés, avec des niveaux de dissipation d'énergie équivalents voire moindres que ceux des technologies mémoires actuelles.Parmi les technologies de mémoires non-volatiles émergentes, les mémoires à changement de phase (PCM) sont le candidat le plus prometteur pour remplacer la technologie de mémoire Flash conventionnelle. Les PCM offrent une grande variété de fonctions, comme une lecture et une écriture rapide, un excellent potentiel de miniaturisation, une compatibilité CMOS et des performances élevées de rétention de données à haute température et d'endurance, et peuvent donc ouvrir la voie à des applications non seulement pour les dispositifs mémoires, mais également pour les systèmes informatiques à hautes performances. Cependant, certains problèmes de fiabilité doivent encore être résolus pour que les PCM se positionnent comme un remplacement concurrentiel de la mémoire Flash.Ce travail se concentre sur l'étude de mémoires à changement de phase intégrées afin d'optimiser leurs performances et de proposer des solutions pour surmonter les principaux points critiques de la technologie, ciblant des applications à hautes températures. Afin d'améliorer la fiabilité de la technologie, la stœchiométrie du matériau à changement de phase a été conçue de façon appropriée et des dopants ont été ajoutés, optimisant ainsi la stabilité thermique. Une diminution de la vitesse de programmation est également rapportée, ainsi qu'un drift résiduel de la résistance de l'état de faiblement résistif vers des valeurs de résistance plus élevées au cours du temps.Une nouvelle technique de programmation est introduite, permettant d'améliorer la vitesse de programmation des dispositifs et, dans le même temps, de réduire avec succès le phénomène de drift en résistance. Par ailleurs, un algorithme de programmation des PCM multi-bits est présenté. Un générateur d'impulsions fournissant des impulsions avec la tension souhaitée en sortie a été conçu et testé expérimentalement, répondant aux demandes de programmation d'une grande variété de matériaux innovants et en permettant la programmation précise et l’optimisation des performances des PCM. / Semiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology.
2

Caractérisation électrique et étude TEM des problèmes de fiabilité dans les mémoires à changement de phase enrichis en germanium / Electrical characterization & TEM study of the physical mechanism simplied in reliability issues of Ge-rich GST phase-change memories

Coué, Martin 03 March 2016 (has links)
Dans cette thèse, nous proposons une étude détaillée des mécanismes responsables de la perte de données dans les mémoires à changement de phase enrichies en germanium (Ge-rich PRAMs), à savoir la dérive de la résistance au cours du temps et la recristallisation de la phase amorphe. Nous commençons par une présentation du contexte dans lequel s'inscrit cette étude an donnant un aperçu rapide du marché des mémoires à semiconducteur et une comparaison des mémoires non volatiles émergentes. Les principes de fonctionnement de la technologie PRAM sont introduits, avec ses avantages, ses inconvénients, ainsi que la physique régissant le processus de cristallisation dans les matériaux à changement de phase, avant de décrire les problèmes de fiabilité qui nous intéressent.Une caractérisation électrique complète de dispositifs intégrant des alliages de GST enrichi en germanium est ensuite proposée, en commençant par la caractérisation des matériaux utilisés dans nos cellules, introduisant alors les avantages des alliages enrichis en Ge sur le GST standard. Les performances électriques des dispositifs intégrant ces matériaux sont analysées, avec une étude statistique des caractéristiques SET & RESET, de la fenêtre de programmation, de l'endurance et de la vitesse de cristallisation. Nous nous concentrons ensuite sur le thème principal de cette thèse en analysant la dérive en résistance de l'état SET de nos dispositifs Ge-rich, ainsi que les performances de rétention de l'état RESET.Dans la dernière partie, nous étudions les mécanismes physiques impliqués dans ces phénomènes en fournissant une étude détaillée de la structure des cellules, grâce à l'utilisation de la Microscopie Électronique en Transmission (MET). Les conditions et configurations expérimentales sont décrites, avant de présenter les résultats qui nous ont permis d'aller plus loin dans la compréhension de la dérive en résistance et de la recristallisation de la phase amorphe dans les dispositifs Ge-rich. Une discussion est finalement proposée, reliant les résultats des caractérisations électriques avec ceux des analyses TEM, conduisant à de nouvelles perspectives pour l'optimisation des dispositifs PRAMs. / In this thesis we provide a detailed study of the mechanisms responsible for data loss in Ge-rich Ge2Sb2Te5 Phase-Change Memories, namely resistance drift over time and recrystallization of the amorphous phase. The context of this work is first presented with a rapid overview of the semiconductor memory market and a comparison of emerging non-volatile memories. The working principles of PRAM technology are introduced, together with its advantages, its drawbacks, and the physics governing the crystallization process in phase-change materials, before describing the reliability issues in which we are interested.A full electrical characterization of devices integrating germanium-enriched GST alloys is then proposed, starting with the characterization of the materials used in our PCM cells and introducing the benefits of Ge-rich GST alloys over standard GST. The electrical performances of devices integrating those materials are analyzed, with a statistical study of the SET & RESET characteristics, programming window, endurance and crystallization speed. We then focus on the main topic of this thesis by analyzing the resistance drift of the SET state of our Ge-rich devices, as well as the retention performances of the RESET state.In the last part, we investigate on the physical mechanisms involved in these phenomena by providing a detailed study of the cells' structure, thanks to Transmission Electron Microscopy (TEM). The experimental conditions and setups are described before presenting the results which allowed us to go deeper into the comprehension of the resistance drift and the recrystallization of the amorphous phase in Ge-rich devices. A discussion is finally proposed, linking the results of the electrical characterizations with the TEM analyses, leading to new perspectives for the optimization of PRAM devices.

Page generated in 0.0404 seconds