• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 14
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Electrically Controlled Gel Polymer Electrolyte Monopropellants

Autry, Harrison Ryan 04 May 2023 (has links)
Increasing interest in the development of nontoxic monopropellants for the replacement of hydrazine and its derivatives stems from the desire for safer and thus more cost-effective alternatives. Ionic liquid monopropellants based on the hydroxylammonium nitrate and ammonium dinitramide ionic oxidizer salts have received the majority of attention over the last two decades and present a promising alternative with higher performance and more attractive handling qualities than hydrazine. These monopropellants are employed using catalytic methods which lead to their decomposition and ignition. However, the development of compatible catalysts remains a limiting step in the technological readiness of these alternative monopropellants. Due to their ionic nature, the development of ionic liquid monopropellants has led to many investigations on the utilization of electrolysis to achieve combustion. Separately, there has been a longtime interest in the use of gelled propellants for enhanced handling and operating safety. Atomization and combustion inefficiencies associated with gels have continued to limit their use. Monopropellants composed of gel polymer electrolytes present a unique opportunity which combines the safety features of gelled propellants as well as the ionic conductivity seen in ionic liquids, allowing them to decompose and ignite electrolytically. In this research, a family of electrically controlled monopropellants that utilize electrolysis in this fashion was developed from a gel polymer electrolyte. Their fundamental properties, including those pertaining to rheology, conductivity, thermal stability, and combustion, are explored as the composition of the oxidizer salt is varied. / Master of Science / Current advancements in rocket propulsion include interests in developing alternative green propellants for use in spacecraft propulsion systems with the hope of replacing current options which may be toxic to handle and present a serious safety hazard. Alternative propellants are generally thought of as not requiring special safety equipment or protocols in their handling, thereby reducing costs. Several promising options belonging to a category of propellants known as ionic liquids have made significant progress in development since the 1990s and have the potential to be used alongside a novel electrical combustion method known as electrolysis. Gelled propellants are another possible alternative which have been researched for their appealing safety qualities for some time. While not researched for their use as rocket propellants until very recently, gel polymer electrolytes have received interest in this application due to their composition which includes a polymer, commonly used as rocket fuel, and an oxidizer salt. Due to their inherent electrical conductivity, their potential to use electrolysis in a similar manner to ionic liquids to achieve combustion is of interest. The research detailed in this thesis was completed to characterize fundamental material and combustion properties of a gel polymer electrolyte propellant as its oxidizer constituents are varied.
2

Formulation studies on cysteamine for the treatment of nephropathic cystinosis

Buchan, Barbara Elizabeth January 2011 (has links)
Nephropathic cystinosis is a rare autosomal recessive disease characterised by raised lysosomal levels of cystine in the cells of almost all organs. It is treated by regular oral and topical administration of the aminothiol, cysteamine(Cystagon™), which possesses an offensive taste and smell. The oral form frequently causes emesis,and should be administered every six hours to be maximally effective. The topical eye drop treatment requires hourly application to be most effective.In an attempt to reduce this frequency and improve the treatment, the preparation and evaluation of three alternative cysteamine containing formulations (suppositories, long-acting ophthalmic gels and an inhaler) was undertaken. The physiochemical properties, stability and release profiles of the active (cysteamine or phe conjugate) from the formulations were evaluated. The suppositories released cysteamine over a 20-40 minute period with a T75= 10-13minutes. They were most stable at 4°C. The analysis of the ophthalmic gels demonstrated that a weak gel network was formed at low shear stress, the bioadhesion of the gel was increased with inclusion of a cysteamine derivative (e.g.mean force of 0.067N compared to 0.107N with compound included) and eight-hour, first order release from the gel was observed. There was significant adhesion observed between the ophthalmic gels and bovine corneal tissue. The pulmonary microspheres were spherical and within the optimum size range for deep lung delivery (1-5μm). However, Andersen Cascade Impactor analysis revealed poor deep lung penetration. In conclusion, these results demonstrated that more development work was required to produce a useful pulmonary formulation of cysteamine, however, formulation of an ocular applicable gel or suppository was readily achievable. The suppository preparations may be particularly beneficial for the treatment of infants, whilst the ophthalmic gel preparations could be developed for daily or overnight use. With respect to pulmonary delivery, microspheres in the optimum size range were produced. However, deep lung targeting was prevented by static agglomeration, which requires further investigation.
3

Study of Complementary Electrochromic Devices with a Novel Gel Polymer Electrolyte

Lin, Shih-Yuan 10 August 2011 (has links)
In this study, WO3 and NiO thin films were deposited on the ITO/Glass substrates by radio frequency (RF) magnetron sputtering, respectively. The physical and electrochromic properties of thin films were investigated. On the other hand, the lithium perchlorate (LiClO4) powder was dispersed in propylene carbonate (PC) solvent to complete 1 M electrolyte. Then, as the 4.5 wt.% of ethyl cellulose and 8 wt.% ethylene carbonate (EC) were added to this electrolyte under stirring, a gel polymer electrolyte (GPE) was formed. Finally, the WO3 and NiO thin films obtained with the optimal deposition parameters were combined with the GPE to set up a complementary electrochromic device (CECD). The effects of the various coloring voltages on the electrochromic properties of CECD are investigated. The memory effect, energy-saving efficient, response time and switch lifetime of CECD are also estimated and discussed. Experimental results reveal that the amorphous thin films can be obtained with the RF power of 100 W and oxygen concentration of 60% at room temperature (RT). The thicknesses of WO3 and NiO films were approximately 530 nm and 180 nm, respectively. The stoichiometric of thin films were 2.99 for O/W ratio and 1.01 for O/Ni ratio. The GPE [(1 M LiClO4+PC)+ethyl cellulose(4.5 wt.%)+EC(8 wt.%)] exhibits a viscosity coefficient of 100 mPa∙s, a maximum ion conductivity (£m) of 7.17 mS/cm, a minimum activation energy (Ea) of 0.033 eV and a average visible transmittance of 82% at RT. The optimal electrochromic CECD (Glass/ITO/WO3/GPE/NiO/ITO/Glass) biased with a coloring/bleaching voltage of ¡Ó2.2 V revealed a transmittance variation (£GT%) of 54.53%, an optical density change (£GOD) of 0.790, an intercalation charge (Q) of 6.28 mC/cm2 and a coloration efficiency (£b) of 125.21 cm2/C at a wavelength (£f) of 550 nm. The chromaticity coordinates of CECD were x=0.289 and y=0.365 under the colored state. In addition, the energy-saving efficient of CECD was 15.19 W/V-m2 over the wavelength range between 380 nm and 780 nm. Also, it presented an open-circuit memory effect that the colored transmittance (£f at 550 nm) was 18.9% in 24 h. The total response time of the CECD was about 4 s for coloring and bleaching steps. After the repeated switch of 1,000 times, the £GT% of CECD was 43.57%. In this study, WO3 and NiO thin films with good adhesion, amorphous, and nearly stoichiometric were successfully deposited by RF sputter. Furthermore, high £m and high transmittance of GPE can be prepared easily and inexpensively. Our results demonstrated that the CECD exhibited the advantages of low applied voltage, high £b, fast response time and long-term memory characteristics.
4

Preparação, caracterização e aplicação de eletrólitos polímericos gel em células solares TiO2/corante / Preparation, characterization and application of gel polymer electrolyte in dye sensitized solar cells

Benedetti, João Eduardo 12 March 2010 (has links)
Orientador: Ana Flávia Nogueira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-17T19:59:01Z (GMT). No. of bitstreams: 1 Benedetti_JoaoEduardo_D.pdf: 8810025 bytes, checksum: 02324ef0185baef0d7794ea229fb5cda (MD5) Previous issue date: 2010 / Resumo: Este trabalho consistiu na preparação, caracterização e posterior aplicação de eletrólitos poliméricos gel em celulas solares de TiO2/corante. No Capítulo I, e apresentado uma introdução geral sobre células solares e eletrólitos poliméricos. O Capítulo II contém os objetivos deste trabalho. No Capítulo III, são preparados os eletrólitos polimérico gel utilizando a matriz polimérica de poli(oxido de etileno-co-2-(2-metoxietoxi) etil glicidil eter) (P(EO/EM)) contendo I2 e várias concentrações de g-butirolactona (GBL) e LiI. Esses eletrólitos foram caracterizados por medidas de calorimetria exploratória diferencial (DSC), ressonância magnética de Li (RMN), termogravimetria (TGA), difração de raios-X (DRX), condutividade e voltametria cíclica (VC). O eletrólito polimérico gel P(EO/EM)/GBL/LiI/I2 apresentou excelentes propriedades químicas e eletroquímicas. Esses eletrólitos foram aplicados nas células solares de TiO2/corante, conforme e apresentado no Capítulo IV. As células solares foram caracterizadas por meio das curvas de corrente-potencial (J-V), estimativa do tempo de vida do eletron e espectroscopia de absorção transiente (TAS). De modo geral, os dispositivos montados com o eletrólito polimérico (P(EO/EM)/GBL/LiI/I2 apresentaram um aumento da fotocorrente com a incorporação de GBL no eletrólito. Esse resultado e influência da maior difusão das especies redox no meio. Em contrapartida, o aumento da concentração de GBL no eletrólito também provocou uma acentuada perda no potencial de circuito aberto, o que foi relacionado ao aumento dos processos de recombinação na interfaces, contribuindo para a perda da eficiência das células solares. Para minimizar esses efeitos, no Capítulo V, e apresentada a caracterização por meio das curvas de corrente-potencial da célula solar de TiO2/corante montadas com o eletrólito P(EO/EM)/GBL/LiI/I2 preparado com terc-butilpiridina e éter coroa. A incorporação desses aditivos proporcionou um aumento de Voc das células solares e, consequentemente, da eficiência dos dispositivos. O Capítulo VI apresenta os testes de estabilidade das células solares de TiO2/corante preparadas com o eletrólito polimérico gel, no qual apresentou estabilidade apropriada durante 30 dias de teste. O Capítulo VII contém as principais conclusões deste trabalho e perspectiva de continuação para esta linha de pesquisa / Abstract: This thesis consisted in the preparation, characterization and application of gel polymer electrolytes in dye-sensitized TiO2 solar cells. A general introduction to solar cells and to polymer electrolytes will be presented in Chapter I. Chapter II describes the aims of this work. Chapter III deals with the preparation of gel polymer electrolytes based on the poly(ethylene oxide-co-2-(2-methoxyethoxy) ethyl glycidyl ether) (P(EO/EM)) polymer matrix containing I2 and different concentrations of g-butyrolactone (GBL) and LiI. These electrolyte samples were characterized by differential scanning calorimetry (DSC), Li nuclear magnetic resonance (Li RMN), thermogravimetry (TGA), X-ray diffraction (RDX), conductivity measurements and cyclic voltammetry (VC). The gel polymer electrolyte P(EO/EM)/GBL/LiI/I2 provided excellent chemical and electrochemical properties. The electrolytes were applied in dye-sensitized TiO2 solar cells, as discussed in Chapter IV. Solar cells were characterized by current-voltage (IV) curves, electron lifetime measurements and transient absorption spectroscopy (TAS). Most of the solar cells based on the polymer electrolyte P(EO/EM)/GBL/LiI/I2 presented an increase in photocurrent with the addition of GBL to the electrolyte composition. This result may be explained by the enhanced diffusion of redox species in the medium. However, a significant decrease in open-circuit voltage was observed after increasing the GBL concentration in the electrolyte composition. The decrease in open-circuit voltage was assigned to an increase in recombination losses taking place at the interfaces, which resulted in solar cells with lower performance. In order to minimize these drawbacks, dye-sensitized TiO2 solar cells were assembled with the electrolyte P(EO/EM)/GBL/LiI/I2 containing 4-tert-butylpyridine and crown ether molecules. The addition of these additives provided an increase in Voc and, consequently, improved device performance. The characterization of these solar cells based on gel polymer electrolyte containing additives was carried out by means of current-voltage (I-V) curves, as discussed in Chapter V. Dye-sensitized TiO2 solar cells based on gel polymer electrolyte were subjected to durability tests. Good durability results were achieved during a 30-day test, which are discussed in Chapter VI. Chapter VII deals with the main conclusions of this work and outlines some perspectives for the next steps of this research / Doutorado / Quimica Inorganica / Doutor em Ciências
5

Nové gelové elektrolyty na bázi kopolymerů pro elektrochemické zdroje proudu / New gel electrolytes based on copolymers for electrochemical power sources

Peterová, Soňa January 2020 (has links)
This thesis deals with description of preparation and use of monomers and copolymers for gel polymer electrolytes usable in electrochemical power sources. This thesis is divided in theoretical and experimental part. The theoretical part describes electrolytes focused on gel polymer electrolytes, measuring methods and materials used for experiments. The experimental part deals with calculation of composition of polymer electrolytes, method of preparation and evaluation of measured results. The method of applying GPE to a negative LTO electrode and a positive NMC electrode is described too. Linear Sweep Voltammetry (LSV) and Potentiostatic Electrochemical Impedance Spectroscopy (PEIS), Cyclic Voltammetry (CV) and Galvanostatic Cycling with Potential Limitation (GCPL) were chosen for measurement of properties.
6

Technologie přípravy aprotických gelových polymerních elektrolytů na bázi PMMA / Aprotic gel polymer electrolytes based on PMMA prepared by various methodes

Kratochvíl, Martin January 2008 (has links)
This work deals with the preparation and measurement of an ionic conductivity of the gel polymer electrolytes prepared by various methods. In the theoretical part of the work, the types of conducting membranes, the development and the state of the art of the gel polymer electrolytes are summarized. The preparation and the results on ionic conductivity of the gels based on MMA, EMA and EOEMA are discussed in the experimental part.
7

Mechanické vlastnosti gelových aprotických elektrolytů / Mechanical propertties gel polymer aprotic electrolytes

Bárta, Vladimír January 2011 (has links)
This work deals with the measurement of electrical conductivity and mechanical properties of gel polymer electrolyte containing Lithium ion and their preparation. The theoretical part deals with the development of gel polymer electrolyte, their use and methods of measurement of electrical conductivity and mechanical properties. In the experimental part describes the preparation of gel electrolyte, the measurement of electrical conductivity, temperature dependence and the measurement of mechanical properties.
8

Growth, yield and quality of tomatoes (Lycopersicon Esculentum Mill.)and lettuce (Lactuca Sativa L.) as affected by gel-polymer soil amendment and irrigation management

Maboko, Martin Makgose 20 February 2007 (has links)
Tomato and lettuce are amongst the most important fresh vegetables used in South Africa. However, growth, yield and quality of tomato and lettuce are constrained by water shortage and poor productivity of sandy soil. In South Africa, large parts of the agricultural land are in a semi-arid region and water is becoming scarcer and more costly. Recognizing the fundamental importance of water-holding amendments like gel-polymers to enhance water use efficiency and soil physical properties, this study was carried out to investigate the effects of pure gel-polymer and fertiliser-fused gel-polymer soil amendments across five irrigation intervals on growth, yield and quality of tomato (Lycopersicon esculentum Mill.) and lettuce (Lactuca sativa L.). The response of tomato growth, yield and quality to irrigation interval and gel-polymer soil amendments (pure gel-polymer and fertiliser fused gel-polymer) was conducted in a tunnel. The gel-polymer treatments were: control (sandy soil), two pure gel-polymer levels (8 and 16 g-20 L-1 sandy soil, equivalent to 400 g and 800 g-m-3) and two fertiliser fused gel-polymer levels (20 and 40 g-20 L-1 sandy soil, equivalent to 1 kg and 2 kg-m-3). Irrigation was either applied once daily or every second, third, fourth or fifth day, equivalent to 0.8, 1.25, 1.45, 1.88 and 2.29 L of water per 20 L bag of sand. Fruit mass, fruit diameter, fruit number, plant height, stem diameter, number of trusses, root fresh and dry mass, total soluble solids, fruit juice pH and titratable acidity were determined. Neither irrigation interval nor gel-polymer amendments had an influence on tomato quality (total soluble solids, pH and titratable acidity). Generally, plant yield, height, stem diameter, number of trusses, and root fresh and dry mass were increased with gel-polymer amendments compared to pure sandy soil. Regardless of irrigation interval, both fertilizer-fused gel-polymer levels appeared to be effective in improving plant growth and yield compared to pure gel-polymer, which gave good results only at the higher level of application. The study revealed that gel-polymer amendments increased productivity of tomato on a sandy soil. Similarly, the response of lettuce growth, yield and quality to gel-polymers and irrigation intervals was investigated under a tunnel conditions. The gel-polymer treatments were: control, two pure gel-polymer levels (4 and 8 g-10 L-1 sandy soil, equivalent to 400 g and 800 g-m-3) and two fertilizer-fused gel-polymer levels (10 and 20 g-20 L-1 sandy soil, equivalent to 1 kg and 2 kg-m-3). Irrigation was either applied daily or every second, third, fourth or fifth day, equivalent to 0.63, 0.83, 1.04, 1.25 and 1.46 L per 10 L plastic bags. Measurements were made of fresh head mass, head height, head circumference, head diameter, stem diameter, fresh root mass, dry root mass and dry head mass. The dried head samples were analysed for percentage tissue calcium and nitrogen. Lettuce grown on sandy soil amended with higher level of pure gel-polymer (Stock 8) and both fertiliser fused gel-polymer levels (Aqua 10 and 20) resulted in significantly higher fresh and dry head mass, head circumference, head diameter, head height, stem diameter, and fresh and dry root mass as compared to low level of pure gel-polymer (Stock 4) and sandy soil without gel-polymer (control). All irrigation intervals did not have an effect on growth, yield and quality of lettuce except at irrigation interval of every third day, which significantly lowered head circumference. Gel-polymer did not have a significant effect on percentage calcium and nitrogen concentration in the leaf tissue. Growing lettuce in soil amended with higher pure gel-polymer (Stock 8) level and both fertiliser-fused gel-polymer (Aqua 20 and Aqua 40) would likely be economically advantageous for a grower due to improved growth and higher yield of good quality lettuce. / Dissertation (MSc (Horticulture))--University of Pretoria, 2005. / Plant Production and Soil Science / unrestricted
9

Spatially Distributed Programmable Morphing Surfaces and Electrochemical Energy Storage within the Structure

Mukhopadhyay, Souvik 29 September 2022 (has links)
No description available.
10

Preparation And Characterization Of Magnetic Nanoparticles

Kucuk, Burcu 01 June 2009 (has links) (PDF)
Magnetite (Fe3O4) and Maghemite (&amp / #947 / -Fe2O3) are well-known iron oxide phases among magnetic nanoparticles due to their magnetic properties, chemical stability, and nontoxicity. They have gained acceptance in several fields of application of nanomaterials such as magnetic recording systems, magnetic refrigeration, magneto-optical devices, magnetic resonance imaging, magnetic separation techniques and separation and purification of biological molecules. Recently, there is a growing interest in the synthesis of magnetic iron oxide nanoparticles in a polymeric, glassy or ceramic matrix since the preparation of pure phase iron oxide composite material involves, presently, some difficulties partially arising from different oxidation states of iron which can lead to the presence of various oxides. Matrix support, in principle, modifies the properties of nanomaterials, thus opening new possibilities for the control of their performance. In addition, the chosen matrix, polymer or sol-gel, provides binding of the functional groups and also prevents grain growth and agglomeration. Therefore, extensive research is conducted on this subject. Sonochemical technique is an effective method to synthesize magnetic nanoparticles with many unique properties due to extreme reaction conditions. Besides, a microscopic mixing in the synthesis procedure is obtained because of the microjet effect which comes from the collapse of the bubbles. This effect creates relatively uniform reaction conditions. Thus, well-dispersed and stable nanoparticles are obtained by using ultrasound. In this study, &amp / #947 / -Fe2O3, maghemite nanoparticles are accommodated in an inert, inorganic, transparent and temperature resistant sol gel matrix to achieve stabilization. The nature and concentration of the salt used, evaporation conditions of the sols, the following heat treatments had been investigated and shown that they had great influence on the particle size and the final iron oxide phase in the sol-gel. The Fe2O3/SiO2 nanocomposites were characterized using X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) techniques. In addition, magnetite (Fe3O4) nanoparticles were synthesized via co-precipitation in the presence of poly(methacrylic acid) (PMAA) in aqueous solution. PMAA, which was used as the coating material, prevents magnetite nanoparticles from oxidation towards a lower saturation magnetization iron oxide phases. In order to achieve small particle size and uniform size distribution of the magnetite nanoparticles in PMAA matrix, ultrasonic irradiation was applied during co-precipitation. The polymer coated Fe3O4 nanoparticles were characterized using scanning electron microscopy (SEM), laser particle sizer, X-ray diffraction, (XRD) and vibrating sample magnetometry (VSM) techniques and zeta potential measurements.

Page generated in 0.3154 seconds