• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 50
  • 26
  • 15
  • 10
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 276
  • 33
  • 33
  • 29
  • 28
  • 23
  • 22
  • 19
  • 19
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

MATERIALS AND MODIFICATION OF ELECTRODES FOR THE DETECTION OF BIOLOGICAL MOLECULES

Wandstrat, Michelle Marie 30 November 2006 (has links)
No description available.
72

Exploring Interfaces of Nanofiber NetworksFunctioning as Hierarchical Additives in PolymerNanocomposites

Alexander, Symone L. M. 31 August 2018 (has links)
No description available.
73

Structure-Function Studies of Modular Aromatics That Form Molecular Organogels

Baddeley, Christopher Peter 26 August 2009 (has links)
No description available.
74

Caractérisation d'émulsions gélifiées à froid de [béta]-lactoglobuline destinées à la protection de molécules nutraceutiques / Caractérisation d'émulsions gélifiées à froid de B-lactoglobuline destinées à la protection de molécules nutraceutiques

Leung Sok Line, Valérie 12 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2006-2007 / L'incorporation de nutraceutiques dans les formulations alimentaires est attrayante bien que problématique en raison de la sensibilité de ces molécules aux conditions environnementales. Cette étude visait donc à développer des véhicules protéiques susceptibles de préserver l'intégrité et l'activité de ces composés bioactifs. Des émulsions gélifiées à froid de P-lactoglobuline ont été élaborées puis caractérisées par rhéologie dynamique et microscopie électronique. Leurs propriétés de dissolution et de libération en conditions gastro-intestinales simulées ont été également déterminées. Les résultats indiquent que l'huile et le calcium gouvernent le processus de gélification et modulent la microstructure ainsi que les propriétés fonctionnelles des émulsions gélifiées. Celles-ci sont par ailleurs gastrorésistantes et empêchent la dégradation de l'a-tocopherol, choisie comme molécule de référence, au cours de la digestion enzymatique. Les travaux montrent que l'utilisation d'émulsions gélifiées à froid de P-lactoglobuline constitue une solution viable pour le transport et la protection des molécules nutraceutiques liposolubles et thermosensibles. / Incorporation of nutraceuticals in food formulations, as a means to modulate risk of disease development, is attractive but problematic as these molecules are unstable to environmental conditions. Our objective was to develop a whey protein-based delivery vehicle to transport and protect such bioactive compounds. Cold-set P-lactoglobulin emulsion gels were produced and characterized using dynamic small strain rheometry and electron microscopy techniques. Their dissolution and release behavior under simulated gastrointestinal conditions was also investigated. Results showed that oil and calcium govern the process of gel network formation and modulate the functional properties of cold-set emulsion gels. The latters, in addition, are gastroresistent and effectively prevent a-tocopherol, chosen as a model molecule, from being degraded during enzymatic digestion. This work confirm the suitability of using cold-set P-lactoglobulin emulsion gels as carriers for fat-soluble and heat-sensitive nutraceutical molecules.
75

Design and development of complementary strategies to reinforce cellularized collagen-based tubular gels for vascular applications

Bonizol Camasao, Dimitria 17 April 2023 (has links)
Le besoin clinique de greffes alternatives pour le remplacement des vaisseaux sanguins de petit diamètre a stimulé l'émergence du domaine de l'ingénierie tissulaire vasculaire. Des constructions tubulaires ont été développées au cours des dernières décennies en combinant des échafaudages (structures 3D composées de matrices décellularisées, polymères naturels ou synthétiques), des cellules (cellules adultes ou souches) et des signaux régulateurs (nutriments, facteurs de croissance et / ou stimuli mécaniques) visant à mimer les propriétés de la paroi vasculaire. Le gel de collagène constitue un échafaudage couramment utilisé dans le domaine puisqu'il s'agit de la principale protéine de la paroi vasculaire et qu'il contient donc des signaux structurels et biochimiques inhérents pour favoriser la formation des tissus in vitro. Le Laboratoire de biomatériaux et de bioingénierie de l'Université Laval possède une expertise sur l'extraction de la protéine, la production et la caractérisation de gels tubulaires cellulaires à base de collagène et le groupe rapporte des avancées significatives dans la fabrication d'un modèle tri-culture répliquant les trois couches de la paroi vasculaire. Un inconvénient récurrent de l'utilisation de polymères naturels pour la composition des échafaudages repose sur les faibles propriétés mécaniques résultant de leur processus d'extraction. De plus, la structure et la composition organisées des vaisseaux sanguins confèrent un comportement mécanique unique qui orchestre parfaitement la propagation du sang dans tous les tissus du corps. Cette structure et ce comportement complexes sont difficiles à reproduire dans des constructions d'ingénierie tissulaire et cela a fait l'objet d'intenses recherches au cours des cinquante dernières années. Dans cette optique, l'objectif de cette thèse de doctorat était de concevoir et développer différentes stratégies pour renforcer les gels tubulaires à base de collagène pour des applications vasculaires. Les stratégies étudiées dans cette thèse ont été conçues pour maintenir la similitude biologique du modèle avec le tissu natif et ainsi, aucun composant synthétique ou produit chimique n'a été introduit. Le renforcement des gels tubulaires à base de collagène a été exploré en modifiant différents composants impliqués dans leur préparation: suspension cellulaire, solution de collagène et maturation. Une densité d'ensemencement cellulaire supérieure à celle couramment trouvée dans la littérature, l'incorporation de recombinamers de type élastine (ELR) dans l'échafaudage et la stimulation mécanique dans un bioréacteur de perfusion ont amélioré les propriétés mécaniques des constructions et la raison commune en était l'augmentation de la production d'ECM. Une densité d'ensemencement cellulaire égale ou supérieure à 1.5 x 10⁶ cellules/mL, un échafaudage composé de 70 % de collagène et 30 % de ELR (w %) et la stimulation mécanique dans un bioréacteur de perfusion pendant la maturation sont les conditions suggérées dans chaque stratégie pour la fabrication de modèles de parois vasculaires. En outre, une plate-forme physiologiquement pertinente pour la fabrication et la maturation in situ d'un modèle de paroi vasculaire avancé a été développée, constituant une alternative précieuse pour le test de nouveaux médicaments, technologies et dispositifs endovasculaires et pour l'étude du processus patho/physiologique se produisant dans ce tissu. / The clinical need for alternative grafts for the replacement of small diameter blood vessels stimulated the emergence of the vascular tissue engineering field. Tubular constructs have been developed in the last decades by combining scaffolds (3D structures composed of decellularized matrices, natural or synthetic polymers), cells (adult or stem cells) and regulatory signals (nutrients, growth factors and/or mechanical stimulus) aiming to mimic the properties of the vascular wall. Collagen gel is one common scaffold used in the field since it is the main protein of the vascular wall and therefore it contains inherent structural and biochemical cues to promote tissue formation in vitro. The Laboratory for Biomaterials and Bioengineering of Laval University has an expertise on the extraction of the protein, production, and characterization of cellularized collagen-based tubular gels. Furthermore, the group has been reporting significant advancements in the fabrication of a tri-culture model replicating the three layers of the vascular wall. One recurrent drawback of using natural polymers for composing the scaffolds relies on the low mechanical properties resulted from their extraction process. In addition, the organized structure and composition of blood vessels imparts a unique mechanical behavior which perfectly orchestrate the blood propagation into all tissues of the body. This complex structure and behavior are challenging to reproduce in tissue engineered constructs and this has been a subject of intense research during the last fifty years. In this light, the objective of this doctoral thesis was to design and develop different strategies to reinforce collagen-based tubular gels for vascular applications. The strategies investigated in this thesis were designed to maintain the biological similarity of the model with the native tissue and so, no synthetic components or chemicals were introduced. The reinforcement of collagen-based tubular gels was explored by altering different components involved in their preparation: cell suspension, collagen solution and maturation. Cell seeding density higher than the commonly found in literature, the incorporation of elastin-like recombinamers (ELR) in the scaffold and the mechanical stimulation in a perfusion bioreactor improved the mechanical properties of the constructs and the common reason of that was the increase in the ECM production. Cell seeding density equal or higher than 1.5 x 10⁶ cells/mL, a scaffold composed of 70 % collagen and 30 % ELR (w %) and the mechanical stimulation in a perfusion bioreactor during maturation are the conditions suggested in each strategy for the fabrication of vascular wall models. Furthermore, a physiologically relevant platform for the in situ fabrication and maturation of an advanced vascular wall model was developed constituting a valuable alternative for the testing of new drugs, technologies and endovascular devices and for the investigation of patho/physiological process occurring in this tissue.
76

Synthesis of bioactive surfaces for the control of stem cells differentiation

Prouvé, Émilie 05 March 2023 (has links)
La réparation des défauts osseux de taille importante (fracture, tumeur, nécrose de l'os) pour lesquelles une partie de l'os est manquante et doit être remplacée, demeure un défi important pour le domaine médical. Des matériaux synthétiques, comme des matériaux céramiques, métalliques, et polymères, sont ainsi développés comme substituts osseux. Mais ces matériaux n'interagissent pas suffisamment avec l'os du patient et finissent par être encapsulés par une couche de tissu fibreux, ce qui peut résulter en une fracture de l'os, de l'implant, ou de l'interface entre les deux. La recherche vise donc à étudier et comprendre les interactions entre les cellules et les matériaux, afin de développer des matériaux capables d'interagir avec les cellules, et de mettre au point des implants combinant un matériau bioactif, des cellules, et des facteurs bioactifs permettant la reconstruction du tissu osseux. Dans ce contexte, les cellules souches mésenchymateuses (MSCs) ont gagné en popularité en médecine régénératrice compte tenu de leur capacité d'auto-renouvellement, leur multipotence, et leur taux de prolifération élevé. Cependant, une fois extraites du patient et cultivées in vitro, les MSCs ont tendance à se différencier de manière aléatoire, ce qui conduit à une population hétérogène de cellules avec laquelle il est difficile de reconstruire un tissu. Bien que les MSCs soient utilisées en clinique pour le traitement de diverses pathologies, une meilleure compréhension de leur comportement reste nécessaire pour permettre de contrôler leur différenciation vers une lignée spécifique et ainsi améliorer leurs performances en clinique. Les hydrogels ont émergé comme matériaux prometteurs pour la culture cellulaire puisqu'ils permettent de mimer la matrice extracellulaire naturelle des cellules. Notamment, de nombreuses études ont évalué l'impact de la rigidité des hydrogels sur la différenciation des MSCs et ont montré qu'une rigidité proche de celle d'un tissu naturel favorise la différenciation vers les cellules de ce tissu. Cependant, il est maintenant reconnu que les hydrogels et les tissus naturels ne sont pas caractérisés uniquement par leur rigidité, mais aussi par leur viscoélasticité. Or peu d'études ont été menées sur l'impact des propriétés viscoélastiques des hydrogels sur la différenciation des MSCs (15 articles sur les cinq dernières années via PubMed). Dans ce projet, il a été montré qu'il était possible de synthétiser des hydrogels de poly(acrylamide-co-acide acrylique) avec une rigidité et une viscoélasticité contrôlées, mesurées par compression et par AFM. Cinq hydrogels ont été choisis pour étudier l'impact des propriétés mécaniques sur la différenciation ostéogénique des MSCs en variant la rigidité et le pourcentage de relaxation : 15 kPa-15%, 60 kPa-15%, 140 kPa-15%, 100 kPa-30%, et 140 kPa-70%. Il a été montré que la fonctionnalisation de surface de ces hydrogels avec un peptide mimétique de la protéine BMP-2 a mené à une forme cellulaire étoilée après deux semaines de différenciation, sauf pour la rigidité la plus basse (15 kPa). Cette forme cellulaire étoilée correspondrait à une forme d'ostéocyte, qui est le dernier stade de différenciation ostéogénique des MSCs, et qui n'a jamais été obtenu in vitro à notre connaissance. De plus, une rigidité de 60 kPa a mené à une plus forte expression de marqueurs de différenciation ostéocytaires par rapport à des rigidités de 15 et 140 kPa, pour une même relaxation de 15%. Enfin, la plus forte expression de marqueurs de différenciation d'ostéoblastes et d'ostéocytes a été observée pour l'hydrogel présentant 70% de relaxation et une rigidité de 140 kPa. Ceci semble montrer qu'une viscoélasticité élevée favorise la différenciation ostéogénique des MSCs, même si elle est associée à une rigidité qui n'est pas la plus favorable. Ainsi, les propriétés viscoélastiques de la matrice auraient un impact non négligeable sur la différenciation des MSCs et devraient être considérées à l'avenir. / The repair of large bone defects, including large fracture, tumor, and necrosis for which a part of the bone is missing and has to be replaced, is still a challenge for the medical field. Synthetic materials, such as ceramic, metallic, and polymeric materials, have been developed as bone substitutes. However, these materials do not interact with the bone of the patient and generally end up being encapsulated by a layer of fibrous tissue, that might result in the fracture of the bone, the implant, or the interface between the two. The research therefore aims at studying and understanding cell-material interactions in order to develop materials capable of interacting with cells, and to create new implants combining a carrier material, cells, and bioactive factors, allowing bone reconstruction. In this context, mesenchymal stem cells (MSCs) have gained high interest in regenerative medicine considering their self-renewal ability, multipotency, and high proliferative rate. However, once extracted from the patient and cultivated in vitro, MSCs tend to differentiate randomly, which leads to a heterogeneous population of cells with which it is difficult to reconstruct any tissue. Therefore, although MSCs are used in clinics for the treatment of various pathologies, a better understanding of their biological behavior is still required to provide the ability to control their in vitro differentiation into a specific lineage and improve their clinical performance. Hydrogels have emerged as promising materials for cell culture as they allow to mimic the natural extracellular matrix of cells. Particularly, many studies have evaluated the impact of hydrogels stiffness on MSCs differentiation and showed that a stiffness close to that of a biological tissue leads to a differentiation towards cells of this tissue. Nevertheless, it is now recognized that hydrogels as well as biological tissues are not only described by their stiffness, but also by their viscoelastic properties. However, only few studies have been conducted on the impact of hydrogels viscoelastic properties on MSCs differentiation (15 articles over the past five years from PubMed). In this project, it has been shown that it was possible to synthesize poly(acrylamide-co- acrylic acid) hydrogels with different controlled stiffness and viscoelasticity, evaluated using compression and AFM. Five hydrogels have been chosen to study the impact of hydrogels mechanical properties on MSCs osteogenic differentiation by varying the stiffness and the relaxation percent : 15 kPa-15%, 60 kPa-15%, 140 kPa-15%, 100 kPa-30%, and 140 kPa- 70%. It has been shown that the surface functionalization of these hydrogels with a mimetic peptide of the BMP-2 protein led to star-like cells, except for the lowest stiffness (15 kPa). This star-like shape would correspond to the shape of osteocytes, which is the last stage of osteogenic differentiation, and which has never been obtained in vitro to our knowledge. Moreover, a stiffness of 60 kPa led to a higher expression of osteocyte markers as compared to stiffnesses of 15 and 140 kPa, for a constant low relaxation of 15%. Finally, the strongest expression of osteoblast and osteocyte differentiation markers has been observed for the hydrogel with a high relaxation of 70% and a stiffness of 140 kPa. This shows that a high viscoelasticity would favor MSCs osteogenic differentiation, even if it is associated with a stiffness that is not the most favorable. Thus, the viscoelastic properties of the matrix would have a significant impact on MSCs differentiation and should be considered in the future.
77

Bioimpression d'un modèle en hydrogel épousant la forme d'un œil pour des applications en curiethérapie

Lemay, Sophie 30 May 2022 (has links)
Le mélanome uvéal représente la majorité des cancers primaires intraoculaires chez l'adulte et 90% des cas sont situés dans la choroïde. Souvent, le mélanome uvéal est traité par curiethérapie ou radiothérapie interne. Dans ce traitement, une plaque épisclérale contenant des sources radioactives est placée par chirurgie sur la sclère du patient afin d'y déposer une dose énergétique permettant de faire diminuer le volume tumoral. Le mélanome uvéal se caractérise par des différences dans les niveaux de radiosensibilité des cellules présentes dans la tumeur. Or, ce facteur n'est pas considéré dans les modèles dosimétriques (« fantômes ») actuellement employés par les physiciens médicaux pour la planification du traitement de curiethérapie. Ce projet de maîtrise consiste à concevoir un fantôme dosimétrique à base d'hydrogel, produit par bioimpression, reprenant certaines caractéristiques géométriques de l'œil, et contenant des cellules présentant différents niveaux de radiosensibilité. Pour ce faire, un hydrogel à d'alginate (fonction mécanique), de gomme de xanthane (fonction imprimabilité) et de collagène de type I (fonction cellulaire) a été optimisé en fonction de son imprimabilité en appareil de bioimpression. Une technique a été développée, permettant l'impression d'un dôme d'hydrogel reprenant la géométrie d'une sclère humaine. La viabilité de cellules du mélanome uvéal dans l'hydrogel a été quantifiée pour trois (3) lignées (Mel270, Mμ2, 92.1) possédant des niveaux de radiosensibilité différents, ainsi que pour une lignée saine (fibroblastes stromaux choroïdiens). Ces tests, comparant les valeurs de viabilité avec et sans procédure de bioimpression, ont permis de déterminer la fenêtre optimale d'utilisation des différentes lignées cellulaires pour des expériences de dosimétrie futures. Le modèle de fantôme ainsi développé permettra d'imprimer des formes tumorales contenant des cellules de différents niveaux de radiosensibilité, afin de mieux mesurer le dépôt de la dose par les plaques épisclérales sur les cellules du mélanome uvéal et de la sclère pendant le traitement de curiethérapie. / Uveal melanoma is the most frequent type of intraocular primary cancer and 90% of these tumours are located in the choroid. Uveal melanoma is usually treated by brachytherapy or internal radiotherapy. In this treatment, an episcleral plaque containing radioactive sources is surgically placed onto the patient's sclera to deposit an energetic dose that will reduce the tumor volume. Uveal melanoma is known to be a type of cancer that shows a wide range of radiosensitivity among the different cells that compose the tumour. However, radiosensitivity data are not taken into account in the current dosimetry models ("phantoms") used to prepare the treatment by the medical physicists. This master's project aims at developing, by 3D printing, an eye-shaped cell-laden hydrogel dosimetry phantom that could be used for studying the effect of radiotherapeutic treatments on different cell types that are associated with different radiosensitivity levels. A hydrogel of alginate (mechanical function), collagen type I (cellular function) and xanthan gum (printability function) was optimized for its printability. A technique was developed to print a dome-shaped hydrogel having the geometry of the human sclera. The cell viability of uveal melanoma in the hydrogel was quantified for 3 cell lines (Mel270, Mμ2, 92.1) having different levels of radiosensitivity, as well as for a healthy cell line (choroidal stromal fibroblasts). These tests that compare the cell viability with and without printing procedures indicated the optimal window for the use of the different cell lines in future dosimetry experiments. The dosimetry phantoms model thus developed will allow the printing of tumor shape containing cells with different radiosensitivity level to better measure the deposition of the dose by the episcleral plaque son uveal melanoma cells and the sclera during the treatment of brachytherapy.
78

Conception et développement d'hydrogels pour l'ingénierie tissulaire appliquée au tissu osseux

Maisani, Mathieu 28 November 2018 (has links)
Thèse en cotutelle : Université Laval, Québec et Université de Bordeaux, Talence, France / Le besoin clinique de nouvelles stratégies pour pallier aux limites des techniques actuelles dans le cas de comblement et régénération osseuse a permis l’émergence de l’ingénierie tissulaire osseuse. En effet, les stratégies basées les techniques d’ingénierietissulaire semblent être une alternative à l’utilisation de greffes et ainsi de s’affranchir des limites qu’elles présentent. L’approche adoptée dans le cadre de cette thèse consiste en le développement et l’utilisation d’hydrogels comme matériaux d’échafaudage pour le comblement et la régénération de tissus osseux. De nombreuses approches utilisant elles aussi des hydrogels existent, chacune possède ses avantages et limites. Dans ce contexte, nos travaux ont consisté en l’utilisation d’un hydrogel non-polymérique comme matériau de base dans le développement des stratégies d’ingénierie tissulaire osseuse. Brièvement, plusieurs types cellulaires sont présents au sein du tissu osseux et vont participer aux processus de formation et de régénération osseuse. L’objectif de nos stratégies a été l’apport de cellules souches exogènes puis leur différenciation en cellules ostéoformatrices, ou le recrutement et la différenciation des cellules de l’hôte, au sein du matériau, en cellules ostéoformatrices. Le gel de GNF a été utilisé comme matrice tridimensionnelle pour ses propriétés d’injectabilité, de géléfication en l’absence d’agent de réticulation toxique et son potentiel ostéoinducteur. Ce travail a consisté audéveloppement de stratégies pour l’ingénierie tissulaire osseuse en associant le gel de GNF à une matrice naturelle de collagène cellularisée ou à des molécules bioactives pour promouvoir la régénération de lésions osseuses. Dans un premier temps, nos travaux ont reposé sur l’association de l’échafaudage à base d’hydrogels de GNF avec des cellules souches exogène ensemencées dans une matrice de collagène. Ensuite nos travaux ont porté sur l’association d’un échafaudage à base d’hydrogel de GNF avec un facteur de croissance ostéogénique. Ces travaux ont permis de développer et caractériser des stratégies pertinentes pour la régénération de lésions osseuses basées sur l’utilisation d’hydrogels. / New strategies to overcome the clinical limitations of current techniques for bone defect filling and regeneration has led to the involvement of bone tissue engineering. Indeed, strategies based on tissue engineering techniques seem to be an alternative to the use of grafts and thus to defeat their limits. The approach employed in this thesis consists in development and use of hydrogels as scaffold materials for bone defect filling and regeneration. There are many approaches that also use hydrogels, each one with its advantages and limitations. In this context, our work consisted in the use of a non-polymeric hydrogel as basic material in the development of strategies for bone tissue engineering. Briefly, several cell types are present within bone tissue and will participate in the processes of bone formation and regeneration. The objective of our strategies was the contribution of exogenous stem cells and then their differentiation into osteogenic cells or the recruitment and differentiation of the host cells into osteogenic cells within the material. The GNF gel was used as a three-dimensional matrix considering its properties of injectability, gelation in the absence of toxic crosslinking agent and its osteoinductive potential. The goal was to develop strategies for bone tissue engineering by combining the GNF gel with a natural matrix of cellular collagen or bioactive molecules to promote the regeneration of bone lesions. Initially, our work was based on the association of the scaffolds based on GNF hydrogels with exogenous stem cells seeded in a matrix of collagen gels. Next, our work focused on the association of a GNF hydrogel scaffold with an osteogenic growth factor. This work allowed to develop and characterize strategies relevant to the regeneration of bone lesions based on the use of hydrogels.
79

Étude des mécanismes de formation d'hydrogels peptidiques issus de l'hydrolyse trypsique des protéines sériques et évaluation de leur capacité d'utilisation comme système de délivrance de composés bioactifs

Pimont Farge, Mathilde Garance Hélène 08 January 2024 (has links)
Titre de l'écran-titre (visionné le 15 décembre 2023) / Les peptides auto-assembleurs présentent des intérêts majeurs dans le secteur des nanotechnologies. Ils peuvent former des structures spécifiques capables de piéger des molécules bioactives et d'améliorer leur stabilité lors de la digestion gastro-intestinale. Plusieurs travaux ont montré que le peptide auto-assembleur f1-8 (β-Lg f1-8) généré par l'hydrolyse trypsique d'un isolat de protéines du lactosérum (IPL) formait un hydrogel après des étapes de concentration et de purification par filtration membranaire et lavage par centrifugation. Bien que ce procédé ne permettait pas de purifier le peptide β-Lg f1-8 avec le rendement attendu (~90%), un mélange peptidique complexe a été obtenu. Ces fractions peptidiques pourraient former des nanostructures capables de piéger des molécules bioactives. Une des applications ciblées serait donc d'utiliser ces fractions peptidiques pour la délivrance de composés bioactifs. Pour confirmer cette propriété, les interactions peptide-peptide impliquées dans la gélification des fractions peptidiques lors de la purification du peptide β-Lg f1-8 doivent être caractérisées afin de valider les mécanismes mis en jeu. Le premier objectif de cette thèse était de comprendre le processus de purification du β-Lg f1-8 et les interactions peptide-peptide impliquées. Pour cela, les fractions peptidiques obtenues lors des étapes de production du peptide β-Lg f1-8 ont été caractérisées en termes de profils peptidiques, de taux de pureté du peptide β-Lg f1-8 et de la capacité de gélification de chaque fraction. De manière générale, la pureté du β-Lg f1-8 était améliorée en augmentant le nombre de lavages. Néanmoins, malgré les faibles proportions en β-Lg f1-8 obtenues lors des premiers stades de lavage, la formation d'un hydrogel était tout de même constatée. Deux autres peptides (β-Lg f15-20 et β-Lg f41-60) identifiés dans des proportions importantes pourraient être impliqués dans la formation d'hydrogel. Il a été démontré qu'aux premiers stades de lavage, des interactions entre les différents peptides permettaient la formation d'un gel. À l'inverse, lorsque la pureté du β-Lg f1-8 était maximale, un cas particulier de gélification correspondant à l'auto-assemblage a été constaté. Le deuxième objectif de cette thèse visait à étudier l'impact de la concentration peptidique, de la température, du pH et de la concentration en β-Lg f1-8 sur la formation d'un hydrogel par une fraction peptidique issue de l'hydrolyse trypsique d'un isolat de protéines du lactosérum. De plus, l'impact des peptides β-Lg f15-20 et β-Lg f41-60 sur la formation de l'hydrogel par auto-assemblage du peptide β-Lg f1-8 a été déterminé. La formation d'hydrogel par les hydrolysats de protéines du lactosérum résultait d'un équilibre entre les liaisons hydrogène et les interactions hydrophobes et électrostatiques. Les interactions entre les peptides β-Lg f15-20 et β-Lg f41-60 et le peptide β-Lg f1-8 avaient un impact négatif sur l'auto-assemblage du β-Lg f1-8. Grâce aux résultats générés, un mécanisme pour la gélification des fractions peptidiques a été proposé. Le troisième objectif consistait à évaluer la capacité de l'hydrogel de peptide de lactosérum à piéger la curcumine, et à la protéger lors d'une digestion gastro-intestinale en système de digestion statique in vitro. Les résultats obtenus ont été comparés à ceux générés pour un gel d'isolat de protéines sériques (IPL). Une efficacité de piégeage de la curcumine de 91% dans l'hydrogel peptidique a été obtenue contre 99,9% pour le gel d'IPL. À la fin de la digestion intestinale, la rétention de la curcumine était de 98% dans l'hydrogel peptidique, alors qu'elle était de 90% pour le gel d'IPL. Contrairement à ce dernier, la préservation du réseau de nanofibres, et donc des interactions hydrophobes peptide-curcumine au cours de la digestion intestinale, pouvait expliquer cette plus faible libération de curcumine. Les travaux de cette thèse ont donc mis en évidence la capacité de formation d'hydrogel par des fractions peptidiques lors des étapes de purification du peptide β-Lg f1-8. Par ailleurs, la compréhension des mécanismes mis en jeu au cours de la formation d'hydrogel par des fractions peptidiques issues d'une hydrolyse d'un IPL a pu être significativement améliorée afin de proposer une application potentielle de ces fractions peptidiques comme système de piégeage de la curcumine. Finalement, cette étude a permis d'améliorer la compréhension de la libération de la curcumine par la β-lactoglobuline. En conséquence ces différentes conclusions représentent une contribution novatrice pour le développement de nanostructures issues de peptides naturels constituant des systèmes de délivrance de composés bioactifs. / Self-assembling peptides have recently attracted attention in the nanotechnology sector. They can form specific nanostructures with the ability to trap bioactive molecules and enhance their stability during gastro-intestinal digestion. Several works showed that the self-assembling peptide β-Lg f1-8 generated by the tryptic hydrolysis of a whey protein isolate (WPI) could form hydrogels after concentration and purification by membrane filtration and wash steps. Despite the non-optimized purification rate of β-Lg f1-8 reached during the different processing steps, a complex mixture of peptides was obtained. These peptide fractions formed nanostructures with entrapment capacity of bioactive molecules, particularly hydrophobic compounds. A possible application would be to use these peptide fractions for the bioactive compound delivery. To confirm this property, the peptide-peptide interactions involved in the gelation of peptide fractions during purification of the β-Lg f1-8 peptide need to be characterized in order to validate the mechanisms involved. The first objective of this thesis was to understand the purification process of β-Lg f1-8 and the peptide-peptide interactions involved. Thus, the peptide fractions obtained during the β-Lg f1-8 production were characterized for their peptide profiles, β-Lg f1-8 purity and the gelation capacity of each fraction. Overall, the relative proportion of β-Lg f1-8 was correlated with the number of wash steps. Nevertheless, despite the low proportions of β-Lg f1-8 obtained for early purification steps, hydrogel formation was observed. Two other peptides (β-Lg f15-20 and β-Lg f41-60) identified in significant proportions could be involved in hydrogel formation. At the beginning of the purification steps, interactions between peptides with the capacity to form gel were observed. On the contrary, when the purity of β-Lg f1-8 was maximal, gels were produced by self-assembling of β-Lg f1-8. The second objective of this thesis was to investigate the impact of peptide concentration, temperature, pH and β-Lg f1-8 concentration on hydrogel formation by a peptide fraction from the tryptic hydrolysis of a WPI. In addition, the impact of β-Lg f15-20 and β-Lg f41-60 peptides on the β-Lg f1-8 self-assembling was determined. Hydrogel formation by whey protein hydrolysates involved a balance between hydrogen bonds and hydrophobic and electrostatic interactions. The presence of the β-Lg f1-8 peptide initiated gelation by increasing the nanofiber density. Interactions between the β-Lg f15-20 and β-Lg f41-60 peptides and β-Lg f1-8 had a negative impact on β-Lg f1-8 self-assembling. Thanks to the results generated, a mechanism for the peptide fractions gelation was proposed. The third objective was to assess the ability of the whey peptide hydrogel to trap curcumin, widely used as a model hydrophobic bioactive compound, and to protect it from gastro-intestinal digestion in a static in vitro digestion system. The results obtained were compared with those obtained for a whey protein isolate gel. A curcumin entrapment efficiency of 91.0% was obtained in the peptide hydrogel versus 99.9% for the WPI gel. At the end of the intestinal digestion, curcumin retention was 98% in the peptide hydrogel, compared to 90% for the whey protein gel. In contrast to the whey protein gel, the preservation of the nanofiber network, and thus of hydrophobic peptide-curcumin interactions during intestinal digestion, could explain this lower curcumin release. The works carried out in this thesis showed that hydrogel formation occurred with peptide fractions obtained during the purification steps of β-Lg f1-8. Furthermore, understanding of the mechanisms involved in hydrogel formation by peptide fractions derived from hydrolysis of a WPI has been significantly improved to propose a potential application of these peptide fractions as curcumin trapping systems. Finally, this study has improved our understanding regarding the curcumin release from β-lactoglobulin. Consequently, this findings represent a relevant contribution to the development of nanostructures derived from natural peptides for bioactive compounds delivery systems.
80

Synthèse et Purification de matériaux à caractère cristal liquide à base de triphénylène pour leur utilisation dans des diodes électroluminescentes organiques.

Roussel, Olivier C 07 September 2006 (has links)
Les diodes électroluminescentes organiques (OLED) ont une durée de vie limitée. Cette limitation est notamment due à la présence d'impuretés dans le matériau électroluminescent. Ces impuretés proviennent principalement des électrodes. Nous pensons que l'ajout de couches de matériaux entre les électrodes et le matériau électroluminescent peut retarder l'arrivée des impuretés. Cette couche ajoutée doit avoir plusieurs caractéristiques dont principalement : être conductrice, ne pas absorber la lumière, être facilement mise en oeuvre et être d'une grande pureté. Nous pensons que des matériaux de type discotique possédant une mésophase aux températures d'utilisation de la OLED peuvent remplir ce cahier des charges. Nous avons choisi d'étudier les composés discotiques à base de triphénylène, car celui-ci n'absorbe pas dans le visible. Nous avons tout d'abord étudié les 2,3,6,7,10,11-Hexa-(alkylthio)triphénylènes (HATT). Les HATT possèdent déjà les propriétés physiques que nous recherchons à l'exception des propriétés thermotropes. Nous avons donc étudié la possibilité de modifier celles-ci. La synthèse de plusieurs HATT possédant six chaînes alkylsulfanyles identiques n'a pas donné les résultats attendus du point de vue des propriétés thermotropes. Nous avons alors synthétisé des molécules possédant plusieurs chaînes alkylsulfanyles différentes. Après différents essais, nous avons trouvé un mélange de molécules possédant plusieurs chaînes latérales différentes ayant les propriétés physiques recherchées. Mais ce matériau est composé d'un grand nombre de molécules et sa purification est difficile. Les techniques classiques de purification des composés organiques ne donnant pas une pureté suffisante, ou étant inapplicables sur une mésophase cristal liquide à température ambiante, nous avons donc recherché d'autres techniques de purification ou d'obtention des propriétés thermotropes désirées. Nous avons étudié la purification par raffinage de zone des matériaux à l'aide d'une impureté que nous avons ajoutée et suivie au cours des manipulations. Le raffinage de zone montre une bonne purification lors de l'utilisation d'une transition de phase entre une phase cristalline et une phase liquide. Par contre, lors de l'utilisation d'une transition impliquant une mésophase (cristal liquide ou cristal plastique), une faible (ou une absence de) purification est observée. Ces deux dernières études ont été faites sur des 2,3,6,7,10,11-Hexa(alkyloxy)triphénylènes (HAOT) que nous avons synthétisés et purifiés au préalable. Les gels de silice fonctionnalisés que nous avons utilisés montrent une purification des cations métalliques durs et, dans une moindre mesure, des cations métalliques intermédiaires dans le concept dur-mou. Le phosphore, seul élément non-métallique que nous ayons étudié, est l'élément dont la baisse de concentration est la moins efficace. La seconde approche pour obtenir des mélanges possédant une mésophase cristal liquide à température ambiante est la formation de mélanges de molécules synthétisées et purifiées isolément. Parmi les mélanges de molécules que nous avons effectués, nous avons pu observer une plage de concentration de mélanges ternaires qui possède les propriétés thermotropes recherchées. Nous avons donc obtenu un matériau cristal liquide à température ambiante grâce à un mélange de molécules. Le matériau ainsi formé absorbe peu dans le visible, possède potentiellement une bonne mobilité des porteurs de charges électriques, est facilement obtenu à une pureté suffisante. Ce mélange de molécules possède donc les propriétés que nous recherchons pour être utilisé comme couche de matériau ajoutée aux OLED.

Page generated in 0.0327 seconds