• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scale dependency of total water variance and its implication for cloud parameterizations

Schemann, Vera, Stevens, Bjorn, Grützun, Verena, Quaas, Johannes 25 August 2015 (has links) (PDF)
The scale dependency of variance of total water mixing ratio is explored by analyzing data from a general circulation model (GCM), a numerical weather prediction model (NWP), and large-eddy simulations (LESs). For clarification, direct numerical simulation (DNS) data are additionally included, but the focus is placed on defining a general scaling behavior for scales ranging from global down to cloud resolving. For this, appropriate power-law exponents are determined by calculating and approximating the power density spectrum. The large-scale models (GCM and NWP) show a consistent scaling with a power-law exponent of approximately 22. For the high-resolution LESs, the slope of the power density spectrum shows evidence of being somewhat steeper, although the estimates are more uncertain. Also the transition between resolved and parameterized scales in a current GCM is investigated. Neither a spectral gap nor a strong scale break is found, but a weak scale break at high wavenumbers cannot be excluded. The evaluation of the parameterized total water variance of a state-of-the-art statistical scheme shows that the scale dependency is underestimated by this parameterization. This study and the discovered general scaling behavior emphasize the need for a development of scale-dependent parameterizations.
12

Parameter estimation using data assimilation in an atmospheric general circulation model

Schirber, Sebastian, Klocke, Daniel, Pincus, Robert, Quaas, Johannes, Anderson, Jeffrey L. 25 August 2015 (has links) (PDF)
This study explores the viability of parameter estimation in the comprehensive general circulation model ECHAM6 using ensemble Kalman filter data assimilation techniques. Four closure parameters of the cumulus-convection scheme are estimated using increasingly less idealized scenarios ranging from perfect-model experiments to the assimilation of conventional observations. Updated parameter values from experiments with real observations are used to assess the error of the model state on short 6 h forecasts and on climatological timescales. All parameters converge to their default values in single parameter perfect-model experiments. Estimating parameters simultaneously has a neutral effect on the success of the parameter estimation, but applying an imperfect model deteriorates the assimilation performance. With real observations, single parameter estimation generates the default parameter value in one case, converges to different parameter values in two cases, and diverges in the fourth case. The implementation of the two converging parameters influences the model state: Although the estimated parameter values lead to an overall error reduction on short timescales, the error of the model state increases on climatological timescales.
13

Investigation of evapotranspiration concepts in hydrological modelling for climate change impact assessment

Hartmann, Gabriele Maria, January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007.
14

Impact of climate change on reservoir water storage and operation of large scale dams in Thailand / 気候変動がタイの大ダムにおける貯水量と貯水池操作に与える影響について

Donpapob, Manee 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19976号 / 工博第4220号 / 新制||工||1653(附属図書館) / 33072 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 立川 康人, 教授 堀 智晴, 准教授 KIM SUNMIN / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
15

Fractional Habitability comparison of slow rotating Earth-like bodies

Gothefors-Holm, Gustaf January 2023 (has links)
ROCKE-3D is a contemporary Global Circulation Model allowing research into the complex processes behind the climate of planets. Using ROCKE-3D one can construct a model coupling atmosphere, land, and ocean revealing how the climate of a planet evolves over time. When constructing a model using ROCKE-3D, 2 different types of oceans can be used, one shallow without horizontal heat transfer and one fully coupled dynamic ocean. Simulations created using the different ocean types give rise to different results. In this project, the fractional habitability of the model 'planets' will be calculated using various methods in order to evaluate the differences between ocean types in ROCKE-3D simulations. There is also a hope to better understand how parameters such as rotation period and insolation, are affected when using different ocean types. The results show a large difference in predicted habitability fraction using two approximations for the ocean heat transport indicating that the Qflux approximation produces unrealistic models and should be avoided. / ROCKE-3D är en modern Global Circulation Model som tillåter forskning in i de komplexa processer som bygger planeters klimat. Vid användning av ROCKE-3D kan modeller som kopplar atmosfärer, land och hav konstrueras, detta kan avslöja hur en planets klimat utvecklas över tid. När en model konstrueras med ROCKE-3D kan 2 olika typer av hav användas, ett utan horisontell värmeöverföring som kallas för ett "Qflux" hav och ett fullt kopplat dynamiskt hav. Simulationer skapade med de olika havstyperna ger skillnad i resultat. I det här projektet, beräknas modell-planeternas fractional habitability för att evaluera skillnaden mellan havstyp i ROCKE-3D simulationer. Det finns även ett hopp för en bättre förståelse av hur parametrar, rotationsperiod och solinstrålning, påverkar när det är att föredra användningen av en viss havstyp. Resultaten visar att skillnaden i ""fractional habitability" mellan simulationer skapta med de 2 havstyperna minskar när solinstrålningen ökar, vilket visar att användandet av ett "Qflux" hav i skapandet av simulationer vid låg solinstrålning borde avrådas.
16

Structure of the Tropical Easterly Jet in NCAR CAM-3.1 GCM

Rao, Samrat January 2013 (has links) (PDF)
This thesis examines the structure of the Tropical Easterly Jet (TEJ) in a General Circulation Model (GCM). The TEJ is observed only during the Indian summer monsoon period and is strongest during July and August. The jet structure simulated by an atmospheric GCM (CAM-3.1) in July has been compared with reanalysis data. The simulated TEJ was displaced westward by ~ 25◦ when compared to observations. The removal of orography had no impact on the jet structure. This demonstrated that the Tibetan Plateau did not play an important role in the location and structure of the jet. The changes in cumulus scheme in the GCM had a large influence on the location of the jet maxima. To examine the factors which control the location and structure of the jet, a series of experiments were conducted using an aqua-planet version of the model. The impact of different sea surface temperature (SST) profiles was studied. The rainfall in the GCM was primarily in the regions where the SST attained a maximum. By altering the location of SST maximum (and hence the rainfall maximum), the impact of location of rainfall maximum on the location and structure of the jet was studied. When the rainfall maximum was located close to the equator, it did not generate a strong jet but had an influence on the vertical structure of the jet. A large number of simulations were conducted with multiple rainfall maxima and the need for these was demonstrated since only then was the observed jet structure well simulated. Based on the simulations, it was concluded that the simulation of the TEJ by CAM-3.1 was unrealistic because of large unrealistic rainfall over Saudi Arabia in this GCM. Equatorial heating has been shown to be important to simulate proper jet structure. The zonal structure of the jet was also influenced by rainfall in the Pacific Ocean. Although the aqua-planet configuration of the CAM-3.1 GCM provided several useful insights, the simulation was not perfect on account of errors in the simulation of the temperature profile in the lower troposphere. An ideal-physics configuration of the GCM was used. This removed the cumulus physics and instead imposed the observed heating pro-files. Both upper tropospheric friction and radiative-convective atmospheric temperatures were required to simulate the TEJ. The problems with the simulation of structure in the jet exit region was corrected by using radiative-convective atmospheric temperatures that were qualitatively similar to those observed in northern hemisphere summer time. The ideal-physics configuration reconfirmed that the Saudi Arabian rainfall was responsible for the westward shift of the TEJ in the simulations. The ideal-physics simulations showed that the simple analytical model proposed by Gillin1980 was not suitable for the simulation of TEJ. The above the simulations indicate that a shift in the location of the jet is related to a shift in the rainfall pattern. Based on this insight one would expect that the jet location will be different in good and bad monsoon periods. This is indeed the case. In July 2002 the Indian monsoon failed after beginning well in June. In June the TEJ is consequently located west ward compared to July. The same situation prevails even in good and poor monsoon years. In a good monsoon year (July 1988) the jet maximum is located westward when compared to a bad monsoon year (July 2002). In this thesis we have clearly demonstrated the role of anomalous rainfall on the location of the TEJ. This thesis has shown that an accurate simulation of the TEJ depends upon the accurate simulation of various rainfall centers that act as multiple heat sources in the atmosphere. The rainfall in the equatorial region does not influence the strength of the TEJ but alters the vertical structure of the jet. The strength the jet is dependent on the intensity of rainfall and the latitudinal distance from the equator. The complex vertical structure of the jet is not simulated by simple analytical models of the jet.
17

Climate dynamics of the South Pacific Convergence Zone and similarities with other subtropical convergence zones in the Southern Hemisphere

Widlansky, Matthew J. 15 November 2010 (has links)
Three semi-permanent cloud bands exist in the Southern Hemisphere extending southeastward from the equator, through the tropics, and into the subtropics. The most prominent of these features occurs in the South Pacific and is referred to as the South Pacific Convergence Zone (SPCZ). Similar convergence zones, with less intensity, exist in the South Atlantic (SACZ) and Indian (SICZ) oceans. We attempt to explain the physical mechanisms that promote the diagonal orientation of the SPCZ and the processes that determine the timescales of its variability. It is argued that the slowly varying sea surface temperature patterns produce upper tropospheric wind fields that vary substantially in longitude. Regions where 200 hPa zonal winds decrease with longitude (i.e., negative zonal stretching deformation, or dU/dx<0) reduce the group speed of the eastward propagating synoptic (3-6 day period) Rossby waves and locally increase the wave energy density. Such a region of wave accumulation occurs in the vicinity of the SPCZ, thus providing a physical basis for the diagonal orientation and earlier observations that the zone acts as a "graveyard" of propagating synoptic disturbances. In essence, dU/dx=0 demarks the boundary of the graveyard while regions where dU/dx<0 denote the graveyard itself. Composites of the life cycles of synoptic waves confirm this hypothesis. From the graveyard hypothesis comes a more general theory accounting for the SPCZ's spatial orientation and its longer term variability influenced by the El Niño-Southern Oscillation (ENSO), or alternatively, the changing background SST associated with different phases of ENSO.
18

The Bay Of Bengal Circulation In An Ocean General Circulation Model

Vinayachandran, P N 12 1900 (has links) (PDF)
No description available.
19

Estimates of Fractional Habitability for Proxima Centauri b using a 3D GCM

Sparrman, Viktor January 2020 (has links)
Exoplanet discovery has grown more quickly in recent years. However, the nature of their discovery leaves many unanswered in questions regarding exoplanetary habitability. Proxima Centauri b, an exoplanet which orbits the Sun's closest stellar neighbour, Proxima Centauri, was recently discovered with a subzero equilibrium temperature. Although not considered habitable based on the classical definition of the liquid water range, there may be fractions of Proxima Centauri b which are habitable. A prior study simulated the climate conditions of Proxima Centauri b until equilibrium was reached, using a variety of initial conditions. In this project, various metrics for calculating the fractional habitability of Proxima Centauri b are presented and applied to the results of the prior study's simulations. Colormaps are used to show the ice and temperature distributions that produce the calculated values of fractional habitability. The fractional habitabilities calculated show that while the value is both case and metric dependent, for the vast majority of all cases and metrics the value is nonzero implying that Proxima Centauri b is likely to have habitable regions. / Upptäckandet av exoplaneter har ökat i takt över de senaste åren. Samtidigt, på grund av sättet som de upptäcks finns många obesvarade frågor angående planeternas beboelighet. Proxima Centauri b är en exoplanet som kretsar kring solens närmsta granne, Proxima Centauri. Exoplaneten upptäcktes nyligen med en jämviktstemperatur under $0\degree$C. Trots att exoplaneten inte anses beboelig enligt klassisk definition kan det finnas delar av Proxima Centauri b som är beboeliga. En tidigare studie simulerade klimatförhållandena av Proxima Centarui b till jämvikt nåddes, med varierade begynnelsetillstånd. I detta projekt beräknas andelen av Proxima Centauri b som är beboelig genom flera olika mått för "fractional habitability". Måtten jämförs med den tidigare studien och dess simuleringar. Grafiskt åsikdligörs resultaten via färgkartor över planeten för istjocklek och yttemperatur. De beräknade värdena på Proxima Centauri b's "fractional habitability" påvisar beroende på mått och begynnelsetillstånd. Däremot, för en majoritet av både fall och mått är värdet nollskilt vilket antyder att Proxima Centauri b är delvist beboelig.
20

GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India

Cherian, Ribu, Venkataraman, Chandrasekhar, Quaas, Johannes, Ramachandran, Srinivasan January 2013 (has links)
The influence of anthropogenic emissions on aerosol distributions and the hydrological cycle are examined with a focus on monsoon precipitation over the Indian subcontinent, during January 2001 to December 2005, using the European Centre for Medium-Range Weather Forecasts-Hamburg (ECHAM5.5) general circulation model extended by the Hamburg Aerosol Module (HAM). The seasonal variability of aerosol optical depth (AOD) retrieved from the MODerate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellite is broadly well simulated (R 0.6–0.85) by the model. The spatial distribution and seasonal cycle of the precipitation observed over the Indian region are reasonably well simulated (R 0.5 to 0.8) by the model, while in terms of absolute magnitude, the model underestimates precipitation, in particular in the south-west (SW) monsoon season. The model simulates significant anthropogenic aerosol-induced changes in clear-sky net surface solar radiation (dimming greater than -7 W m-2), which agrees well with the observed trends over the Indian region. A statistically significant decreasing precipitation trend is simulated only for the SWmonsoon season over the central-north Indian region, which is consistent with the observed seasonal trend over the Indian region. In the model, this decrease results from a reduction in convective precipitation, where there is an increase in stratiform cloud droplet number concentration (CDNC) and solar dimming that resulted from increased stability and reduced evaporation. Similarities in spatial patterns suggest that surface cooling, mainly by the aerosol indirect effect, is responsible for this reduction in convective activity. When changes in large-scale dynamics are allowed by slightly disturbing the initial state of the atmosphere, aerosol absorption in addition leads to a further stabilization of the lower troposphere, further reducing convective precipitation.

Page generated in 0.1388 seconds