• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 17
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Underwater source localization with a generalized likelihood ratio processor

Conn, Rebecca M. January 1994 (has links)
No description available.
2

Diagnostics after a Signal from Control Charts in a Normal Process

Lou, Jianying 03 October 2008 (has links)
Control charts are fundamental SPC tools for process monitoring. When a control chart or combination of charts signals, knowing the change point, which distributional parameter changed, and/or the change size helps to identify the cause of the change, remove it from the process or adjust the process back in control correctly and immediately. In this study, we proposed using maximum likelihood (ML) estimation of the current process parameters and their ML confidence intervals after a signal to identify and estimate the changed parameters. The performance of this ML diagnostic procedure is evaluated for several different charts or chart combinations for the cases of sample sizes and , and compared to the traditional approaches to diagnostics. None of the ML and the traditional estimators performs well for all patterns of shifts, but the ML estimator has the best overall performance. The ML confidence interval diagnostics are overall better at determining which parameter has shifted than the traditional diagnostics based on which chart signals. The performance of the generalized likelihood ratio (GLR) chart in shift detection and in ML diagnostics is comparable to the best EWMA chart combination. With the application of the ML diagnostics naturally following a GLR chart compared to the traditional control charts, the studies of a GLR chart during process monitoring can be further deepened in the future. / Ph. D.
3

Detection and diagnostic of freeplay induced limit cycle oscillation in the flight control system of a civil aircraft

Urbano, Simone 18 April 2019 (has links) (PDF)
This research study is the result of a 3 years CIFRE PhD thesis between the Airbus design office(Aircraft Control domain) and TéSA laboratory in Toulouse. The main goal is to propose, developand validate a software solution for the detection and diagnosis of a specific type of elevator andrudder vibration, called limit cycle oscillation (LCO), based on existing signals available in flightcontrol computers on board in-series aircraft. LCO is a generic mathematical term defining aninitial condition-independent periodic mode occurring in nonconservative nonlinear systems. Thisstudy focuses on the LCO phenomenon induced by mechanical freeplays in the control surface ofa civil aircraft. The LCO consequences are local structural load augmentation, flight handlingqualities deterioration, actuator operational life reduction, cockpit and cabin comfort deteriorationand maintenance cost augmentation. The state-of-the-art for freeplay induced LCO detection anddiagnosis is based on the pilot sensitivity to vibration and to periodic freeplay check on the controlsurfaces. This study is thought to propose a data-driven solution to help LCO and freeplaydiagnosis. The goal is to improve even more aircraft availability and reduce the maintenance costsby providing to the airlines a condition monitoring signal for LCO and freeplays. For this reason,two algorithmic solutions for vibration and freeplay diagnosis are investigated in this PhD thesis. Areal time detector for LCO diagnosis is first proposed based on the theory of the generalized likeli hood ratio test (GLRT). Some variants and simplifications are also proposed to be compliantwith the industrial constraints. In a second part of this work, a mechanical freeplay detector isintroduced based on the theory of Wiener model identification. Parametric (maximum likelihoodestimator) and non parametric (kernel regression) approaches are investigated, as well as somevariants to well-known nonparametric methods. In particular, the problem of hysteresis cycleestimation (as the output nonlinearity of a Wiener model) is tackled. Moreover, the constrainedand unconstrained problems are studied. A theoretical, numerical (simulator) and experimental(flight data and laboratory) analysis is carried out to investigate the performance of the proposeddetectors and to identify limitations and industrial feasibility. The obtained numerical andexperimental results confirm that the proposed GLR test (and its variants/simplifications) is a very appealing method for LCO diagnostic in terms of performance, robustness and computationalcost. On the other hand, the proposed freeplay diagnostic algorithm is able to detect relativelylarge freeplay levels, but it does not provide consistent results for relatively small freeplay levels. Moreover, specific input types are needed to guarantee repetitive and consistent results. Further studies should be carried out in order to compare the GLRT results with a Bayesian approach and to investigate more deeply the possibilities and limitations of the proposed parametric method for Wiener model identification.
4

GLR Control Charts for Monitoring the Mean Vector or the Dispersion of a Multivariate Normal Process

Wang, Sai 28 February 2012 (has links)
In many applications, the quality of process outputs is described by more than one characteristic variable. These quality variables usually follow a multivariate normal (MN) distribution. This dissertation discusses the monitoring of the mean vector and the covariance matrix of MN processes. The first part of this dissertation develops a statistical process control (SPC) chart based on a generalized likelihood ratio (GLR) statistic to monitor the mean vector. The performance of the GLR chart is compared to the performance of the Hotelling Χ² chart, the multivariate exponentially weighted moving average (MEWMA) chart, and a multi-MEWMA combination. Results show that the Hotelling Χ² chart and the MEWMA chart are only effective for a small range of shift sizes in the mean vector, while the GLR chart and some carefully designed multi-MEWMA combinations can give similarly better overall performance in detecting a wide range of shift magnitudes. Unlike most of these other options, the GLR chart does not require specification of tuning parameter values by the user. The GLR chart also has the advantage in process diagnostics: at the time of a signal, estimates of change-point and out-of-control mean vector are immediately available to the user. All these advantages of the GLR chart make it a favorable option for practitioners. For the design of the GLR chart, a series of easy to use equations are provided to users for calculating the control limit to achieve the desired in-control performance. The use of this GLR chart with a variable sampling interval (VSI) scheme has also been evaluated and discussed. The rest of the dissertation considers the problem of monitoring the covariance matrix. Three GLR charts with different covariance matrix estimators have been discussed. Results show that the GLR chart with a multivariate exponentially weighted moving covariance (MEWMC) matrix estimator is slightly better than the existing method for detecting any general changes in the covariance matrix, and the GLR chart with a constrained maximum likelihood estimator (CMLE) gives much better overall performance for detecting a wide range of shift sizes than the best available options for detecting only variance increases. / Ph. D.
5

GLR Control Charts for Process Monitoring with Sequential Sampling

Peng, Yiming 06 November 2014 (has links)
The objective of this dissertation is to investigate GLR control charts based on a sequential sampling scheme (SS GLR charts). Phase II monitoring is considered and the goal is to quickly detect a wide range of changes in the univariate normal process mean parameter and/or the variance parameter. The performance of the SS GLR charts is evaluated and design guidelines for SS GLR charts are provided so that practitioners can easily apply the SS GLR charts in applications. More specifically, the structure of this dissertation is as follows: We first develop a two-sided SS GLR chart for monitoring the mean μ of a normal process. The performance of the SS GLR chart is evaluated and compared with other control charts. The SS GLR chart has much better performance than that of the fixed sampling rate GLR chart. It is also shown that the overall performance of the SS GLR chart is better than that of the variable sampling interval (VSI) GLR chart and the variable sampling rate (VSR) CUSUM chart. The SS GLR chart has the additional advantage that it requires fewer parameters to be specified than other VSR charts. The optimal parameter choices are given, and regression equations are provided to find the limits for the SS GLR chart. If detecting one-sided shifts in μ is of interest, the above SS GLR chart can be modified to be a one-sided chart. The performance of this modified SS GLR chart is investigated. Next we develop an SS GLR chart for simultaneously monitoring the mean μ and the variance 𝜎² of a normal process. The performance and properties of this chart are evaluated. The design methodology and some illustrative examples are provided so that the SS GLR chart can be easily used in applications. The optimal parameter choices are given, and the performance of the SS GLR chart remains very good as long as the parameter choices are not too far away from the optimized choices. / Ph. D.
6

Biologically-inspired Motion Control for Kinematic Redundancy Resolution and Self-sensing Exploitation for Energy Conservation in Electromagnetic Devices

Babakeshizadeh, Vahid January 2014 (has links)
This thesis investigates particular topics in advanced motion control of two distinct mechanical systems: human-like motion control of redundant robot manipulators and advanced sensing and control for energy-efficient operation of electromagnetic devices. Control of robot manipulators for human-like motions has been one of challenging topics in robot control for over half a century. The first part of this thesis considers methods that exploits robot manipulators??? degrees of freedom for such purposes. Jacobian transpose control law is investigated as one of the well-known controllers and sufficient conditions for its universal convergence are derived by using concepts of ???stability on a manifold??? and ???transferability to a sub-manifold???. Firstly, a modification on this method is proposed to enhance the rectilinear trajectory of the robot end-effector. Secondly, an abridged Jacobian controller is proposed that exploits passive control of joints to reduce the attended degrees of freedom of the system. Finally, the application of minimally-attended controller for human-like motion is introduced. Electromagnetic (EM) access control systems are one of growing electronic systems which are used in applications where conventional mechanical locks may not guarantee the expected safety of the peripheral doors of buildings. In the second part of this thesis, an intelligent EM unit is introduced which recruits the selfsensing capability of the original EM block for detection purposes. The proposed EM device optimizes its energy consumption through a control strategy which regulates the supply to the system upon detection of any eminent disturbance. Therefore, it draws a very small current when the full power is not needed. The performance of the proposed control strategy was evaluated based on a standard safety requirement for EM locking mechanisms. For a particular EM model, the proposed method is verified to realize a 75% reduction in the power consumption.
7

Evaluation of Uncertainty in Hydrodynamic Modeling

Camacho Rincon, Rene Alexander 17 August 2013 (has links)
Uncertainty analysis in hydrodynamic modeling is useful to identify and report the limitations of a model caused by different sources of error. In the practice, the main sources of errors are divided into model structure errors, errors in the input data due to measurement imprecision among other, and parametric errors resulting from the difficulty of identifying physically representative parameter values valid at the temporal and spatial scale of the models. This investigation identifies, implements, evaluates, and recommends a set of methods for the evaluation of model structure uncertainty, parametric uncertainty, and input data uncertainty in hydrodynamic modeling studies. A comprehensive review of uncertainty analysis methods is provided and a set of widely applied methods is selected and implemented in real case studies identifying the main limitations and benefits of their use in hydrodynamic studies. In particular, the following methods are investigated: the First Order Variance Analysis (FOVA) method, the Monte Carlo Uncertainty Analysis (MCUA) method, the Bayesian Monte Carlo (BMC) method, the Markov Chain Monte Carlo (MCMC) method and the Generalized Likelihood Uncertainty Estimation (GLUE) method. The results of this investigation indicate that the uncertainty estimates computed with FOVA are consistent with the results obtained by MCUA. In addition, the comparison of BMC, MCMC and GLUE indicates that BMC and MCMC provide similar estimations of the posterior parameter probability distributions, single-point parameter values, and uncertainty bounds mainly due to the use of the same likelihood function, and the low number of parameters involved in the inference process. However, the implementation of MCMC is substantially more complex than the implementation of BMC given that its sampling algorithm requires a careful definition of auxiliary proposal probability distributions along with their variances to obtain parameter samples that effectively belong to the posterior parameter distribution. The analysis also suggest that the results of GLUE are inconsistent with the results of BMC and MCMC. It is concluded that BMC is a powerful and parsimonious strategy for evaluation of all the sources of uncertainty in hydrodynamic modeling. Despites of the computational requirements of BMC, the method can be easily implemented in most practical applications.
8

The Design of GLR Control Charts for Process Monitoring

Xu, Liaosa 27 February 2013 (has links)
Generalized likelihood ratio (GLR) control charts are investigated for two types of statistical process monitoring (SPC) problems. The first part of this dissertation considers the problem of monitoring a normally distributed process variable when a special cause may produce a time varying linear drift in the mean. The design and application of a GLR control chart for drift detection is investigated. The GLR drift chart does not require specification of any tuning parameters by the practitioner, and has the advantage that, at the time of the signal, estimates of both the change point and the drift rate are immediately available. An equation is provided to accurately approximate the control limit. The performance of the GLR drift chart is compared to other control charts such as a standard CUSUM chart and a CUSCORE chart designed for drift detection. We also compare the GLR chart designed for drift detection to the GLR chart designed for sustained shift detection since both of them require only a control limit to be specified. In terms of the expected time for detection and in terms of the bias and mean squared error of the change-point estimators, the GLR drift chart has better performance for a wide range of drift rates relative to the GLR shift chart when the out-of-control process is truly a linear drift. The second part of the dissertation considers the problem of monitoring a linear functional relationship between a response variable and one or more explanatory variables (a linear profile). The design and application of GLR control charts for this problem are investigated. The likelihood ratio test of the GLR chart is generalized over the regression coefficients, the variance of the error term, and the possible change-point. The performance of the GLR chart is compared to various existing control charts. We show that the overall performance of the GLR chart is much better than other options in detecting a wide range of shift sizes. The existing control charts designed for certain shifts that may be of particular interest have several chart parameters that need to be specified by the user, which makes the design of such control charts more difficult. The GLR chart is very simple to design, as it is invariant to the choice of design matrix and the values of in-control parameters. Therefore there is only one design parameter (the control limit) that needs to be specified. Especially, the GLR chart can be constructed based on the sample size of n=1 at each sampling point, whereas other charts cannot be applied. Another advantage of the GLR chart is its built-in diagnostic aids that provide estimates of both the change-point and the values of linear profile parameters. / Ph. D.
9

Detection and diagnostic of freeplay induced limit cycle oscillation in the flight control system of a civil aircraf / Détection et diagnostic des oscillations en cycle limite induites par les jeux mécaniques dans le système de commande de vol d’un avion civil

Urbano, Simone 18 April 2019 (has links)
Cette étude est le résultat d’une thèse CIFRE de trois ans entre le bureau d’étude d’Airbus (domaine du contrôle de l’avion) et le laboratoire TéSA à Toulouse. L’objectif principal est de proposer, développer et valider une solution logicielle pour la détection et le diagnostic d’un type spécifique de vibrations des gouvernes de profondeur et direction, appelée oscillation en cycle limite (limit cycle oscillation ou LCO en anglais), basée sur les signaux existants dans les avions civils. LCO est un terme mathématique générique définissant un mode périodique indépendant de conditions initiales et se produisant dans des systèmes non linéaires non conservatifs. Dans cette étude, nous nous intéressons au phénomène de LCO induit par les jeux mécaniques dans les gouvernes d’un avion civil. Les conséquences du LCO sont l’augmentation locale de la charge structurelle, la dégradation des qualités de vol, la réduction de la durée de vie de l’actionneur, la dégradation du confort du poste de pilotage et de la cabine, ainsi que l’augmentation des coûts de maintenance. L’état de l’art en matière de détection et de diagnostic du LCO induit par le jeu mécanique est basé sur la sensibilité du pilote aux vibrations et sur le contrôle périodique du jeu sur les gouvernes. Cette étude propose une solution basée sur les données (issues de la boucle d’asservissement des actionneurs qui agissent sur les gouvernes) pour aider au diagnostic du LCO et à l’isolement du jeu mécanique. L’objectif est d’améliorer encore plus la disponibilité des avions et de réduire les coûts de maintenance en fournissant aux compagnies aériennes un signal de contrôle pour le LCO et les jeux mécaniques. Pour cette raison, deux solutions algorithmiques pour le diagnostic des vibrations et des jeux ont été proposées. Un détecteur en temps réel pour la détection du LCO est tout d’abord proposé basé sur la théorie du rapport de vraisemblance généralisé (generalized likelihood ratio test ou GLRT en anglais). Certaines variantes et simplifications sont également proposées pour satisfaire les contraintes industrielles. Un détecteur de jeu mécanique est introduit basé sur l’identification d’un modèle de Wiener. Des approches paramétrique (estimateur de maximum de vraisemblance) et non paramétrique (régression par noyau) sont explorées, ainsi que certaines variantes des méthodes non paramétriques. En particulier, le problème de l’estimation d’un cycle d’hystérésis (choisi comme la non-linéarité de sortie d’un modèle de Wiener) est abordé. Ainsi, les problèmes avec et sans contraintes sont étudiés. Une analyse théorique, numérique (sur simulateur) et expérimentale (données de vol et laboratoire) est réalisée pour étudier les performances des détecteurs proposés et pour identifier les limitations et la faisabilité industrielle. Les résultats numériques et expérimentaux obtenus confirment que le GLRT proposé (et ses variantes / simplifications) est une méthode très efficace pour le diagnostic du LCO en termes de performance, robustesse et coût calculatoire. D’autre part, l’algorithme de diagnostic des jeux mécaniques est capable de détecter des niveaux de jeu relativement importants, mais il ne fournit pas de résultats cohérents pour des niveaux de jeu relativement faibles. En outre, des types d’entrée spécifiques sont nécessaires pour garantir des résultats répétitifs et cohérents. Des études complémentaires pourraient être menées afin de comparer les résultats de GLRT avec une approche Bayésienne et pour approfondir les possibilités et les limites de la méthode paramétrique proposée pour l’identification du modèle de Wiener. / This research study is the result of a 3 years CIFRE PhD thesis between the Airbus design office(Aircraft Control domain) and TéSA laboratory in Toulouse. The main goal is to propose, developand validate a software solution for the detection and diagnosis of a specific type of elevator andrudder vibration, called limit cycle oscillation (LCO), based on existing signals available in flightcontrol computers on board in-series aircraft. LCO is a generic mathematical term defining aninitial condition-independent periodic mode occurring in nonconservative nonlinear systems. Thisstudy focuses on the LCO phenomenon induced by mechanical freeplays in the control surface ofa civil aircraft. The LCO consequences are local structural load augmentation, flight handlingqualities deterioration, actuator operational life reduction, cockpit and cabin comfort deteriorationand maintenance cost augmentation. The state-of-the-art for freeplay induced LCO detection anddiagnosis is based on the pilot sensitivity to vibration and to periodic freeplay check on the controlsurfaces. This study is thought to propose a data-driven solution to help LCO and freeplaydiagnosis. The goal is to improve even more aircraft availability and reduce the maintenance costsby providing to the airlines a condition monitoring signal for LCO and freeplays. For this reason,two algorithmic solutions for vibration and freeplay diagnosis are investigated in this PhD thesis. Areal time detector for LCO diagnosis is first proposed based on the theory of the generalized likeli hood ratio test (GLRT). Some variants and simplifications are also proposed to be compliantwith the industrial constraints. In a second part of this work, a mechanical freeplay detector isintroduced based on the theory of Wiener model identification. Parametric (maximum likelihoodestimator) and non parametric (kernel regression) approaches are investigated, as well as somevariants to well-known nonparametric methods. In particular, the problem of hysteresis cycleestimation (as the output nonlinearity of a Wiener model) is tackled. Moreover, the constrainedand unconstrained problems are studied. A theoretical, numerical (simulator) and experimental(flight data and laboratory) analysis is carried out to investigate the performance of the proposeddetectors and to identify limitations and industrial feasibility. The obtained numerical andexperimental results confirm that the proposed GLR test (and its variants/simplifications) is a very appealing method for LCO diagnostic in terms of performance, robustness and computationalcost. On the other hand, the proposed freeplay diagnostic algorithm is able to detect relativelylarge freeplay levels, but it does not provide consistent results for relatively small freeplay levels. Moreover, specific input types are needed to guarantee repetitive and consistent results. Further studies should be carried out in order to compare the GLRT results with a Bayesian approach and to investigate more deeply the possibilities and limitations of the proposed parametric method for Wiener model identification.
10

Spectrum Sensing in Cognitive Radio Networks

Bokharaiee Najafee, Simin 07 1900 (has links)
Given the ever-growing demand for radio spectrum, cognitive radio has recently emerged as an attractive wireless communication technology. This dissertation is concerned with developing spectrum sensing algorithms in cognitive radio networks where a single or multiple cognitive radios (CRs) assist in detecting licensed primary bands employed by single or multiple primary users. First, given that orthogonal frequency-division multiplexing (OFDM) is an important wideband transmission technique, detection of OFDM signals in low-signal-to-noise-ratio scenario is studied. It is shown that the cyclic prefix correlation coefficient (CPCC)-based spectrum sensing algorithm, which was previously introduced as a simple and computationally efficient spectrum-sensing method for OFDM signals, is a special case of the constrained generalized likelihood ratio test (GLRT) in the absence of multipath. The performance of the CPCC-based algorithm degrades in a multipath scenario. However when OFDM is implemented, by employing the inherent structure of OFDM signals and exploiting multipath correlation in the GLRT algorithm a simple and low-complexity algorithm called the multipath-based constrained-GLRT (MP-based C-GLRT) algorithm is obtained. Further performance improvement is achieved by combining both the CPCC- and MP-based C-GLRT algorithms. A simple GLRT-based detection algorithm is also developed for unsynchronized OFDM signals. In the next part of the dissertation, a cognitive radio network model with multiple CRs is considered in order to investigate the benefit of collaboration and diversity in improving the overall sensing performance. Specially, the problem of decision fusion for cooperative spectrum sensing is studied when fading channels are present between the CRs and the fusion center (FC). Noncoherent transmission schemes with on-off keying (OOK) and binary frequency-shift keying (BFSK) are employed to transmit the binary decisions to the FC. The aim is to maximize the achievable secondary throughput of the CR network. Finally, in order to reduce the required transmission bandwidth in the reporting phase of the CRs in a cooperative sensing scheme, the last part of the dissertation examines nonorthogonal transmission of local decisions by means of on-off keying. Proposed and analyzed is a novel decoding-based fusion rule for combining the hard decisions in a linear manner.

Page generated in 0.084 seconds