Spelling suggestions: "subject:"generative 2models"" "subject:"generative emodels""
31 |
Contributions to generative models and their applicationsChe, Tong 10 1900 (has links)
Generative models are a large class of machine learning models for unsupervised learning. They have various applications in machine learning and artificial intelligence. In this thesis, we discuss many aspects of generative models and their applications to other machine learning problems. In particular, we discuss several important topics in generative models, including how to stabilize discrete GAN training with importance sampling, how to do better sampling from GANs using a connection with energy-based models, how to better train auto-regressive models with the help of an energy-based model formulation, as well as two applications of generative models to other machine learning problems, one about residual networks, the other about safety verification. / Les modèles génératifs sont une grande classe de modèles d’apprentissage automatique pour
l’apprentissage non supervisé. Ils ont diverses applications dans l’apprentissage automatique
et l’intelligence artificielle. Dans cette thèse, nous discutons de nombreux aspects des modèles
génératifs et de leurs applications à d’autres problèmes d’apprentissage automatique. En
particulier, nous discutons de plusieurs sujets importants dans les modèles génératifs, y
compris comment stabiliser la formation GAN discrète avec un échantillonnage d’importance,
comment faire un meilleur échantillonnage à partir de GAN en utilisant une connexion avec
des modèles basés sur l’énergie, comment mieux former des modèles auto-régressifs avec
l’aide d’une formulation de modèle basée sur l’énergie, ainsi que deux applications de modèles
génératifs à d’autres problèmes d’apprentissage automatique, l’une sur les réseaux résiduels,
l’autre sur la vérification de la sécurité.
|
32 |
Cooperative versus Adversarial Learning: Generating Political TextJonsson, Jacob January 2018 (has links)
This thesis aims to evaluate the current state of the art for unconditional text generation and compare established models with novel approaches in the task of generating texts, after being trained on texts written by political parties from the Swedish Riksdag. First, the progression of language modeling from n-gram models and statistical models to neural network models is presented. This is followed by theoretical arguments for the development of adversarial training methods,where a generator neural network tries to fool a discriminator network, trained to distinguish between real and generated sentences. One of the methods in the research frontier diverges from the adversarial idea and instead uses cooperative training, where a mediator network is trained instead of a discriminator. The mediator is then used to estimate a symmetric divergence measure between the true distribution and the generator’s distribution, which is to be minimized in training. A set of experiments evaluates the performance of cooperative training and adversarial training, and finds that they both have advantages and disadvantages. In the experiments, the adversarial training increases the quality of generated texts, while the cooperative training increases the diversity. The findings are in line with the theoretical expectation. / Denna uppsats utvärderar några nyligen föreslagna metoder för obetingad textgenerering, baserade på s.k. “Generative Adversarial Networks” (GANs). Den jämför etablerade modeller med nya metoder för att generera text, efter att ha tränats på texter från de svenska Riksdagspartierna. Utvecklingen av språkmodellering från n-gram-modeller och statistiska modeller till modeller av neurala nätverk presenteras. Detta följs upp av teoretiska argument för utvecklingen av GANs, för vilka ett generatornätverk försöker överlista ett diskriminatornätverk, som tränas skilja mellan riktiga och genererade meningar. En av de senaste metoderna avviker från detta angreppssätt och introducerar istället kooperativ träning, där ett mediatornätverk tränas istället för en diskriminator. Mediatorn används sedan till att uppskatta ett symmetriskt divergensmått mellan den sanna distributionen och generatorns distribution, vilket träningen syftar till att minimera. En serie experiment utvärderar hur GANs och kooperativ träning presterar i förhållande till varandra, och finner att de båda har för- och nackdelar. I experimenten ökar GANs kvaliteten på texterna som genereras, medan kooperativ träning ökar mångfalden. Resultaten motsvarar vad som kan förväntas teoretiskt.
|
33 |
Updating the generator in PPGN-h with gradients flowing through the encoderPakdaman, Hesam January 2018 (has links)
The Generative Adversarial Network framework has shown success in implicitly modeling data distributions and is able to generate realistic samples. Its architecture is comprised of a generator, which produces fake data that superficially seem to belong to the real data distribution, and a discriminator which is to distinguish fake from genuine samples. The Noiseless Joint Plug & Play model offers an extension to the framework by simultaneously training autoencoders. This model uses a pre-trained encoder as a feature extractor, feeding the generator with global information. Using the Plug & Play network as baseline, we design a new model by adding discriminators to the Plug & Play architecture. These additional discriminators are trained to discern real and fake latent codes, which are the output of the encoder using genuine and generated inputs, respectively. We proceed to investigate whether this approach is viable. Experiments conducted for the MNIST manifold show that this indeed is the case. / Generative Adversarial Network är ett ramverk vilket implicit modellerar en datamängds sannolikhetsfördelning och är kapabel till att producera realistisk exempel. Dess arkitektur utgörs av en generator, vilken kan fabricera datapunkter liggandes nära den verkliga sannolikhetsfördelning, och en diskriminator vars syfte är att urskilja oäkta punkter från genuina. Noiseless Joint Plug & Play modellen är en vidareutveckling av ramverket som samtidigt tränar autoencoders. Denna modell använder sig utav en inlärd enkoder som förser generatorn med data. Genom att använda Plug & Play modellen som referens, skapar vi en ny modell genom att addera diskriminatorer till Plug & Play architekturen. Dessa diskriminatorer är tränade att särskilja genuina och falska latenta koder, vilka har producerats av enkodern genom att ha använt genuina och oäkta datapunkter som inputs. Vi undersöker huruvida denna metod är gynnsam. Experiment utförda för MNIST datamängden visar att så är fallet.
|
34 |
Computer Model Emulation and Calibration using Deep LearningBhatnagar, Saumya January 2022 (has links)
No description available.
|
35 |
Three-Dimensional Fluorescence Microscopy Image Synthesis and Analysis Using Machine LearningLiming Wu (6622538) 07 February 2023 (has links)
<p>Recent advances in fluorescence microscopy enable deeper cellular imaging in living tissues with near-infrared excitation light. </p>
<p>High quality fluorescence microscopy images provide useful information for analyzing biological structures and diagnosing diseases.</p>
<p>Nuclei detection and segmentation are two fundamental steps for quantitative analysis of microscopy images.</p>
<p>However, existing machine learning-based approaches are hampered by three main challenges: (1) Hand annotated ground truth is difficult to obtain especially for 3D volumes, (2) Most of the object detection methods work only on 2D images and are difficult to extend to 3D volumes, (3) Segmentation-based approaches typically cannot distinguish different object instances without proper post-processing steps.</p>
<p>In this thesis, we propose various new methods for microscopy image analysis including nuclei synthesis, detection, and segmentation. </p>
<p>Due to the limitation of manually annotated ground truth masks, we first describe how we generate 2D/3D synthetic microscopy images using SpCycleGAN and use them as a data augmentation technique for our detection and segmentation networks.</p>
<p>For nuclei detection, we describe our RCNN-SliceNet for nuclei counting and centroid detection using slice-and-cluster strategy. </p>
<p>Then we introduce our 3D CentroidNet for nuclei centroid estimation using vector flow voting mechanism which does not require any post-processing steps.</p>
<p>For nuclei segmentation, we first describe our EMR-CNN for nuclei instance segmentation using ensemble learning and slice fusion strategy.</p>
<p>Then we present the 3D Nuclei Instance Segmentation Network (NISNet3D) for nuclei instance segmentation using gradient vector field array.</p>
<p>Extensive experiments have been conducted on a variety of challenging microscopy volumes to demonstrate that our approach can accurately detect and segment the cell nuclei and outperforms other compared methods.</p>
<p>Finally, we describe the Distributed and Networked Analysis of Volumetric Image Data (DINAVID) system we developed for biologists to remotely analyze large microscopy volumes using machine learning. </p>
|
36 |
An Overview of Probabilistic Latent Variable Models with anApplication to the Deep Unsupervised Learning of ChromatinStatesFarouni, Tarek 01 September 2017 (has links)
No description available.
|
37 |
GENERATIVE MODELS IN NATURAL LANGUAGE PROCESSING AND COMPUTER VISIONTalafha, Sameerah M 01 August 2022 (has links)
Generative models are broadly used in many subfields of DL. DNNs have recently developed a core approach to solving data-centric problems in image classification, translation, etc. The latest developments in parameterizing these models using DNNs and stochastic optimization algorithms have allowed scalable modeling of complex, high-dimensional data, including speech, text, and image. This dissertation proposal presents our state-the-art probabilistic bases and DL algorithms for generative models, including VAEs, GANs, and RNN-based encoder-decoder. The proposal also discusses application areas that may benefit from deep generative models in both NLP and computer vision. In NLP, we proposed an Arabic poetry generation model with extended phonetic and semantic embeddings (Phonetic CNN_subword embeddings). Extensive quantitative experiments using BLEU scores and Hamming distance show notable enhancements over strong baselines. Additionally, a comprehensive human evaluation confirms that the poems generated by our model outperform the base models in criteria including meaning, coherence, fluency, and poeticness. We proposed a generative video model using a hybrid VAE-GAN model in computer vision. Besides, we integrate two attentional mechanisms with GAN to get the essential regions of interest in a video, focused on enhancing the visual implementation of the human motion in the generated output. We have considered quantitative and qualitative experiments, including comparisons with other state-of-the-arts for evaluation. Our results indicate that our model enhances performance compared with other models and performs favorably under different quantitive metrics PSNR, SSIM, LPIPS, and FVD.Recently, mimicking biologically inspired learning in generative models based on SNNs has been shown their effectiveness in different applications. SNNs are the third generation of neural networks, in which neurons communicate through binary signals known as spikes. Since SNNs are more energy-efficient than DNNs. Moreover, DNN models have been vulnerable to small adversarial perturbations that cause misclassification of legitimate images. This dissertation shows the proposed ``VAE-Sleep'' that combines ideas from VAE and the sleep mechanism leveraging the advantages of deep and spiking neural networks (DNN--SNN).On top of that, we present ``Defense–VAE–Sleep'' that extended work of ``VAE-Sleep'' model used to purge adversarial perturbations from contaminated images. We demonstrate the benefit of sleep in improving the generalization performance of the traditional VAE when the testing data differ in specific ways even by a small amount from the training data. We conduct extensive experiments, including comparisons with the state–of–the–art on different datasets.
|
38 |
Adversarial Risks and Stereotype Mitigation at Scale in Generative ModelsJha, Akshita 07 March 2025 (has links)
Generative models have rapidly evolved to produce coherent text, realistic images, and functional code. Yet these remarkable capabilities also expose critical vulnerabilities -- ranging from subtle adversarial attacks to harmful stereotypes -- that pose both technical and societal challenges. This research investigates these challenges across three modalities (code, text, and vision) before focusing on strategies to mitigate biases specifically in generative language models. First, we reveal how programming language (PL) models rely on a `natural channel' of code, such as human-readable tokens and structure, that adversaries can exploit with minimal perturbations. These attacks expose the fragility of state-of-the-art PL models, highlighting how superficial patterns and hidden assumptions in training data can lead to unanticipated vulnerabilities. Extending this analysis to textual and visual domains, we show how over-reliance on patterns seen in training data manifests as ingrained biases and harmful stereotypes. To enable more inclusive and globally representative model evaluations, we introduce SeeGULL, a large-scale benchmark of thousands of stereotypes spanning diverse cultures and identity groups worldwide. We also develop ViSAGe, a benchmark for identifying visual stereotypes at scale in text-to-image (T2I) models, illustrating the persistence of stereotypes in generated images even when prompted otherwise. Building on these findings, we propose two complementary approaches to mitigate stereotypical outputs in language models. The first is an explicit method that uses fairness constraints for model pruning, ensuring essential bias-mitigating features remain intact. The second is an implicit bias mitigation framework that makes a crucial distinction between comprehension failures and inherently learned stereotypes. This approach uses instruction tuning on general-purpose datasets and mitigates stereotypes implicitly without relying on targeted debiasing techniques. Extensive evaluations on state-of-the-art models demonstrate that our methods substantially reduce harmful stereotypes across multiple identity dimensions, while preserving downstream performance. / Doctor of Philosophy / AI systems, especially generative models that create text, images, and code, have advanced rapidly. They can write essays, generate realistic pictures, and assist with programming. However, these impressive capabilities also come with vulnerabilities that pose both technical and societal challenges. Some of these models can be subtly manipulated into making errors, while others unknowingly reinforce harmful stereotypes present in their training data. This research examines these challenges across three types of generative models: those that generate code, text, and images. First, we investigate how generative models that generate code rely on human-readable patterns that attackers can subtly manipulate, revealing hidden weaknesses in even the most advanced models. Extending this analysis to text and image generation, we show how these models often over-rely on patterns from their training data, leading to harmful stereotypes. To systematically study these issues, we introduce two large-scale benchmarks: SeeGULL, a dataset that identifies stereotypes across cultures and identity groups in AI-generated text, and ViSAGe, a dataset that uncovers hidden biases in AI-generated images. Building on these insights, we propose two complementary solutions to reduce biases in generative language models. The first method explicitly removes biased patterns from compressed AI models by introducing filtering techniques that ensure fairness while keeping the model's accuracy intact. The second takes an implicit approach by improving how generative models interpret instructions, making them less likely to generate biased responses in under-informative scenarios. By improving models' general-purpose understanding, this method helps reduce biases without relying on direct debiasing techniques. Our evaluations show that these strategies significantly reduce harmful stereotypes across multiple identity dimensions, making AI systems more fair and reliable while ensuring they remain effective in real-world applications.
|
39 |
Improved training of generative modelsGoyal, Anirudh 11 1900 (has links)
No description available.
|
40 |
Restricted Boltzmann machines : from compositional representations to protein sequence analysis / Machines de Boltzmann restreintes : des représentations compositionnelles à l'analyse des séquences de protéinesTubiana, Jérôme 29 November 2018 (has links)
Les Machines de Boltzmann restreintes (RBM) sont des modèles graphiques capables d’apprendre simultanément une distribution de probabilité et une représentation des données. Malgré leur architecture relativement simple, les RBM peuvent reproduire très fidèlement des données complexes telles que la base de données de chiffres écrits à la main MNIST. Il a par ailleurs été montré empiriquement qu’elles peuvent produire des représentations compositionnelles des données, i.e. qui décomposent les configurations en leurs différentes parties constitutives. Cependant, toutes les variantes de ce modèle ne sont pas aussi performantes les unes que les autres, et il n’y a pas d’explication théorique justifiant ces observations empiriques. Dans la première partie de ma thèse, nous avons cherché à comprendre comment un modèle si simple peut produire des distributions de probabilité si complexes. Pour cela, nous avons analysé un modèle simplifié de RBM à poids aléatoires à l’aide de la méthode des répliques. Nous avons pu caractériser théoriquement un régime compositionnel pour les RBM, et montré sous quelles conditions (statistique des poids, choix de la fonction de transfert) ce régime peut ou ne peut pas émerger. Les prédictions qualitatives et quantitatives de cette analyse théorique sont en accord avec les observations réalisées sur des RBM entraînées sur des données réelles. Nous avons ensuite appliqué les RBM à l’analyse et à la conception de séquences de protéines. De part leur grande taille, il est en effet très difficile de simuler physiquement les protéines, et donc de prédire leur structure et leur fonction. Il est cependant possible d’obtenir des informations sur la structure d’une protéine en étudiant la façon dont sa séquence varie selon les organismes. Par exemple, deux sites présentant des corrélations de mutations importantes sont souvent physiquement proches sur la structure. A l’aide de modèles graphiques tels que les Machine de Boltzmann, on peut exploiter ces signaux pour prédire la proximité spatiale des acides-aminés d’une séquence. Dans le même esprit, nous avons montré sur plusieurs familles de protéines que les RBM peuvent aller au-delà de la structure, et extraire des motifs étendus d’acides aminés en coévolution qui reflètent les contraintes phylogénétiques, structurelles et fonctionnelles des protéines. De plus, on peut utiliser les RBM pour concevoir de nouvelles séquences avec des propriétés fonctionnelles putatives par recombinaison de ces motifs. Enfin, nous avons développé de nouveaux algorithmes d’entraînement et des nouvelles formes paramétriques qui améliorent significativement la performance générative des RBM. Ces améliorations les rendent compétitives avec l’état de l’art des modèles génératifs tels que les réseaux génératifs adversariaux ou les auto-encodeurs variationnels pour des données de taille intermédiaires. / Restricted Boltzmann machines (RBM) are graphical models that learn jointly a probability distribution and a representation of data. Despite their simple architecture, they can learn very well complex data distributions such the handwritten digits data base MNIST. Moreover, they are empirically known to learn compositional representations of data, i.e. representations that effectively decompose configurations into their constitutive parts. However, not all variants of RBM perform equally well, and little theoretical arguments exist for these empirical observations. In the first part of this thesis, we ask how come such a simple model can learn such complex probability distributions and representations. By analyzing an ensemble of RBM with random weights using the replica method, we have characterised a compositional regime for RBM, and shown under which conditions (statistics of weights, choice of transfer function) it can and cannot arise. Both qualitative and quantitative predictions obtained with our theoretical analysis are in agreement with observations from RBM trained on real data. In a second part, we present an application of RBM to protein sequence analysis and design. Owe to their large size, it is very difficult to run physical simulations of proteins, and to predict their structure and function. It is however possible to infer information about a protein structure from the way its sequence varies across organisms. For instance, Boltzmann Machines can leverage correlations of mutations to predict spatial proximity of the sequence amino-acids. Here, we have shown on several synthetic and real protein families that provided a compositional regime is enforced, RBM can go beyond structure and extract extended motifs of coevolving amino-acids that reflect phylogenic, structural and functional constraints within proteins. Moreover, RBM can be used to design new protein sequences with putative functional properties by recombining these motifs at will. Lastly, we have designed new training algorithms and model parametrizations that significantly improve RBM generative performance, to the point where it can compete with state-of-the-art generative models such as Generative Adversarial Networks or Variational Autoencoders on medium-scale data.
|
Page generated in 0.0586 seconds