Spelling suggestions: "subject:"1genetic algorithm (GA)"" "subject:"1genetic allgorithm (GA)""
1 |
Multiplex PCR Primer Design Using Genetic AlgorithmLiang, Hong-Long 23 August 2004 (has links)
The multiplex PCR experiment is to amplify multiple regions of a DNA sequence at the same time by using different primer pairs. Although, in recent years, there are lots of methods for PCR primer design, only a few of them focus on the multiplex PCR primer design. The multiplex PCR primer design is a tedious task since there are too many constraints to be satisfied. A new method for multiplex PCR primer design strategy using genetic algorithm is proposed. The proposed algorithm is able to find a set of suitable primer pairs more efficient and uses a MAP model to speed up the examination of the specificity constraint. The dry-dock experiment shows that the proposed algorithm finds several sets of primer pairs for multiplex PCR that not only obey the design properties, but also have specificity.
|
2 |
Semi-Parametric Techniques for Multi-Response OptimizationWan, Wen 05 November 2007 (has links)
The multi-response optimization (MRO) problem in response surface methodology (RSM) is quite common in industry and in many other areas of science. During the optimization stage in MRO, the desirability function method, one of the most flexible and popular MRO approaches and which has been utilized in this research, is a highly nonlinear function. Therefore, we have proposed use of a genetic algorithm (GA), a global optimization tool, to help solve the MRO problem. Although a GA is a very powerful optimization tool, it has a computational efficiency problem. To deal with this problem, we have developed an improved GA by incorporating a local directional search into a GA process.
In real life, practitioners usually prefer to identify all of the near-optimal solutions, or all feasible regions, for the desirability function, not just a single or several optimal solutions, because some feasible regions may be more desirable than others based on practical considerations. We have presented a procedure using our improved GA to approximately construct all feasible regions for the desirability function. This method is not limited by the number of factors in the design space.
Before the optimization stage in MRO, appropriate fitted models for each response are required. The parametric approach, a traditional RSM regression technique, which is inflexible and heavily relies on the assumption of well-estimated models for the response of interests, can lead to highly biased estimates and result in miscalculating optimal solutions when the user's model is incorrectly specified. Nonparametric methods have been suggested as an alternative, yet they often result in highly variable estimates, especially for sparse data with a small sample size which are the typical properties of traditional RSM experiments.
Therefore, in this research, we have proposed use of model robust regression 2 (MRR2), a semi-parametric method, which combines parametric and nonparametric methods. This combination does combine the advantages from each of the parametric and nonparametric methods and, at the same time, reduces some of the disadvantages inherent in each. / Ph. D.
|
3 |
Description and Application of Genetic AlgorithmWANG, MIN January 2012 (has links)
Genetic Algorithm (GA) as a class of Evolutionary Algorithm (EA) is a search algorithm based on the mechanics of natural selection and natural genetics. This dissertation presents the description, solving procedures and application of GA. The definitions of selection, crossover and mutation operators are given in details and an application based on GA in Time Table Problem (TTP) is performed in a new way. Due to its high capability of overall search, GA is particularly appropriate for solving timetabling and scheduling problems. TTP (Time Table Problem) which belongs to NP-hard problem is a special problem concerning resource management. In this dissertation, a new chromosome coding is designed in order to solve TTP more effectively. And the result presented by MATLAB will converge to a steady condition.
|
4 |
The scheduling of manufacturing systems using Artificial Intelligence (AI) techniques in order to find optimal/near-optimal solutionsMaqsood, Shahid January 2012 (has links)
This thesis aims to review and analyze the scheduling problem in general and Job Shop Scheduling Problem (JSSP) in particular and the solution techniques applied to these problems. The JSSP is the most general and popular hard combinational optimization problem in manufacturing systems. For the past sixty years, an enormous amount of research has been carried out to solve these problems. The literature review showed the inherent shortcomings of solutions to scheduling problems. This has directed researchers to develop hybrid approaches, as no single technique for scheduling has yet been successful in providing optimal solutions to these difficult problems, with much potential for improvements in the existing techniques. The hybrid approach complements and compensates for the limitations of each individual solution technique for better performance and improves results in solving both static and dynamic production scheduling environments. Over the past years, hybrid approaches have generally outperformed simple Genetic Algorithms (GAs). Therefore, two novel priority heuristic rules are developed: Index Based Heuristic and Hybrid Heuristic. These rules are applied to benchmark JSSP and compared with popular traditional rules. The results show that these new heuristic rules have outperformed the traditional heuristic rules over a wide range of benchmark JSSPs. Furthermore, a hybrid GA is developed as an alternate scheduling approach. The hybrid GA uses the novel heuristic rules in its key steps. The hybrid GA is applied to benchmark JSSPs. The hybrid GA is also tested on benchmark flow shop scheduling problems and industrial case studies. The hybrid GA successfully found solutions to JSSPs and is not problem dependent. The hybrid GA performance across the case studies has proved that the developed scheduling model can be applied to any real-world scheduling problem for achieving optimal or near-optimal solutions. This shows the effectiveness of the hybrid GA in real-world scheduling problems. In conclusion, all the research objectives are achieved. Finaly, the future work for the developed heuristic rules and the hybrid GA are discussed and recommendations are made on the basis of the results.
|
5 |
An intelligent manufacturing system for heat treatment schedulingAl-Kanhal, Tawfeeq January 2010 (has links)
This research is focused on the integration problem of process planning and scheduling in steel heat treatment operations environment using artificial intelligent techniques that are capable of dealing with such problems. This work addresses the issues involved in developing a suitable methodology for scheduling heat treatment operations of steel. Several intelligent algorithms have been developed for these propose namely, Genetic Algorithm (GA), Sexual Genetic Algorithm (SGA), Genetic Algorithm with Chromosome differentiation (GACD), Age Genetic Algorithm (AGA), and Mimetic Genetic Algorithm (MGA). These algorithms have been employed to develop an efficient intelligent algorithm using Algorithm Portfolio methodology. After that all the algorithms have been tested on two types of scheduling benchmarks. To apply these algorithms on heat treatment scheduling, a furnace model is developed for optimisation proposes. Furthermore, a system that is capable of selecting the optimal heat treatment regime is developed so the required metal properties can be achieved with the least energy consumption and the shortest time using Neuro-Fuzzy (NF) and Particle Swarm Optimisation (PSO) methodologies. Based on this system, PSO is used to optimise the heat treatment process by selecting different heat treatment conditions. The selected conditions are evaluated so the best selection can be identified. This work addresses the issues involved in developing a suitable methodology for developing an NF system and PSO for mechanical properties of the steel. Using the optimisers, furnace model and heat treatment system model, the intelligent system model is developed and implemented successfully. The results of this system were exciting and the optimisers were working correctly.
|
6 |
Utilizing Energy Storage System to Improve Power System VulnerabilityCurtis Martinez, Ivan 03 July 2012 (has links)
In this thesis, security measures and vulnerability mitigation are mainly addressed. How to improve the system vulnerability is one of the main issues for power system operation and planning. Recent research revealed that Energy Storage Systems (ESSs) have a great potential to be used to improve system vulnerability. A vulnerability assessment is proposed in this thesis to identify the impact factors in the power systems due to generation outage and line outage. A Bus Impact Severity (BIS) analysis is then proposed and used to find the vulnerable buses in the system. The buses with the larger BIS value defined in this thesis are the better locations for ESSs placement. Formulations for optimal locations and capacities of ESSs placement are derived and then solved by Genetic Algorithm (GA). Test results show that the proposed method can be used to find the optimal locations and capacities for ESSs for system vulnerability improvement.
|
7 |
Primer Design Using Double Orthogonal Arrays Intelligent Crossover Genetic AlgorithmLi, Yi-Te 21 July 2003 (has links)
In polymerase chain reaction (PCR), in order to amplify massive DNA sequences successfully, it needs to design an appropriate primer pair. The constraints derived from the traits of PCR for proceeding PCR are used in searching for primer pairs. In this paper, in order to decrease the searching space and to increase the feasible quality of primers, a double orthogonal arrays intelligent crossover genetic algorithm (DOAIGA) is used to solve the primer design problem. DOAIGA combines the traditional genetic algorithm and the Taguchi methodology to efficiently search feasible primers under required constraints. The proposed intelligent crossover subsystem mainly concentrates on the better genes more systematic. The key point of DOAIGA is to achieve the elitism goal by applying the orthogonal arrays (OAs) that is used in quality engineering with a small amount of experiment features. In this thesis, the double orthogonal arrays are used to approach a better forward and reverse primers separately. Compared to the current existing softwares, DOAIGA can obtain feasible primer pairs more effectively. Finally the correctness of primer pair is verified by PCR experiment.
|
8 |
SIMULATIONS-GUIDED DESIGN OF PROCESS ANALYTICAL SENSOR USING MOLECULAR FACTOR COMPUTINGDai, Bin 01 January 2007 (has links)
Many areas of science now generate huge volumes of data that present visualization, modeling, and interpretation challenges. Methods for effectively representing the original data in a reduced coordinate space are therefore receiving much attention. The purpose of this research is to test the hypothesis that molecular computing of vectors for transformation matrices enables spectra to be represented in any arbitrary coordinate system. New coordinate systems are selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a spectrometer. A novel integrated sensing and processing system, termed Molecular Factor Computing (MFC) based near infrared (NIR) spectrometer, is proposed in this dissertation. In an MFC -based NIR spectrometer, spectral features are encoded by the transmission spectrum of MFC filters which effectively compute the calibration function or the discriminant functions by weighing the signals received from a broad wavelength band. Compared with the conventional spectrometers, the novel NIR analyzer proposed in this work is orders of magnitude faster and more rugged than traditional spectroscopy instruments without sacrificing the accuracy that makes it an ideal analytical tool for process analysis. Two different MFC filter-generating algorithms are developed and tested for searching a near-infrared spectral library to select molecular filters for MFC-based spectroscopy. One using genetic algorithms coupled with predictive modeling methods to select MFC filters from a spectral library for quantitative prediction is firstly described. The second filter-generating algorithm designed to select MFC filters for qualitative classification purpose is then presented. The concept of molecular factor computing (MFC)-based predictive spectroscopy is demonstrated with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument.
|
9 |
Localized genetic algorithm for the vehicle routing problemUrsani, Ziauddin, Engineering & Information Technology, Australian Defence Force Academy, UNSW January 2009 (has links)
This thesis identifies some problems, the genetic algorithm (GA) is facing in the area of vehicle routing and proposes various methods to address those problems. Those problems arise from the unavailability of suitable chromosomal representation and evaluation schemes of GA for the Vehicle Routing Problem (VRP). The representation and evaluation schemes already in use have problems of high computational cost, illegal chromosomes (chromosomes not representing a legal tour) and wrong fitness assignment (fitness not truly representing chromosome genetic makeup). These problems are addressed by several proposed new schemes, namely the Self Imposed Constraints Evaluation scheme, the Contour and Reverse Contour Evaluation schemes and the Order Skipping Evaluation scheme, which are specifically tailored for various objectives, problems and situations. Apart from this, a methodology, which has previously being used in other meta-heuristics, is incorporated into GA i.e., the independent application of GA on various sub-localities of the problem. We call this GA, a Localized Genetic Algorithm (LGA). LGA is an iterative procedure between optimization and controlled de-optimization. The procedure of controlled de-optimization is also novel. It brings the solution into a new search space while controlling its cost effectively. LGA is introduced with various search techniques, i.e. intensive, extensive and selective, the use of which depends on the problem size and the availability of computational resources. Furthermore, search reduction techniques (Fitness Approximation Methods) are also introduced into the LGA, which has enabled the LGA to be applied to large scale problems. Due to the implementation of those proposals, LGA is the first GA-driven approach to be applied to very large scale CVRP problems of up to 1200 customers, i.e. datasets presented by Feiyue in 2005 and large scale VRPTW problems of up to 1000 customers, datasets presented by Gehring and Homberger in 1999. Lastly, a standard unit for computational comparison, i.e., Bellman's Evaluation Units BEUs, is also introduced to facilitate computational comparisons for future researchers. LGA has shown promising results on CVRP and VRPTW problems. It is flexible and also has the potential to be extended to not only other vehicle routing problems, but also to other ordering problems.
|
10 |
The Variable Source Area Conceptul Model For Western Ghats, Karnataka, IndiaSawant, Priyadarshi H 12 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0575 seconds