• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 36
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ultra-wideband antenna design for microwave imaging applications : design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment

Adnan, Shahid January 2012 (has links)
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR < 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.
22

OPTIMAL DISTRIBUTION FEEDER RECONFIGURATION WITH DISTRIBUTED GENERATION USING INTELLIGENT TECHNIQUES

Ghaweta, Ahmad 01 January 2019 (has links)
Feeder reconfiguration is performed by changing the open/close status of two types of switches: normally open tie switches and normally closed sectionalizing switches. A whole feeder or part of a feeder may be served from another feeder by closing a tie switch linking the two while an appropriate sectionalizing switch must be opened to maintain the radial structure of the system. Feeder reconfiguration is mainly aiming to reduce the system overall power losses and improve voltage profile. In this dissertation, several approaches have been proposed to reconfigure the radial distribution networks including the potential impact of integrating Distributed Energy Resources (DER) into the grid. These approaches provide a Fast-Genetic Algorithm “FGA” in which the size and convergence speed is improved compared to the conventional genetic algorithm. The size of the population matrix is also smaller because of the simple way of constructing the meshed network. Additionally, FGA deals with integer variable instead of a binary one, which makes FGA a unique method. The number of the mesh/loop is based on the number of tie switches in a particular network. The validity of the proposed FGA is investigated by comparing the obtained results with the one obtained from the most recent approaches. The second the approach is the implementation of the Differential Evolution (DE) algorithm. DE is a population-based method using three operators including crossover, mutation, and selection. It differs from GA in that genetic algorithms rely on crossover while DE relies on mutation. Mutation is based on the differences between randomly sampled pairs of solutions in the population. DE has three advantages: the ability to find the global optimal result regardless of the initial values, fast convergence, and requirement of a few control parameters. DE is a well-known and straightforward population-based probabilistic approach for comprehensive optimization. In distribution systems, if a utility company has the right to control the location and size of distributed generations, then the location and size of DGs may be determined based on some optimization methods. This research provides a promising approach to finding the optimal size and location of the planned DER units using the proposed DE algorithm. DGs location is obtained using the sensitivity of power losses with respect to real power injection at each bus. Then the most sensitive bus is selected for installing the DG unit. Because the integration of the DG adds positive real power injections, the optimal location is the one with the most negative sensitivity in order to get the largest power loss reduction. Finally, after the location is specified, the proposed Differential Evolution Algorithm (DEA) is used to obtain the optimal size of the DG unit. Only the feasible solutions that satisfy all the constraints are considered. The objective of installing DG units to the distribution network is to reduce the system losses and enhance the network voltage profile. Nowadays, these renewable DGs are required to equip with reactive power devices (such as static VAR compensators, capacitor banks, etc.), to provide reactive power as well as to control the voltage at their terminal bus. DGs have various technical benefits such as voltage profile improvement, relief in feeder loading, power loss minimization, stability improvement, and voltage deviation mitigation. The distributed generation may not achieve its full potential of benefits if placed at any random location in the system. It is necessary to investigate and determine the optimum location and size of the DG. Most distribution networks are radial in nature with limited short-circuit capacity. Therefore, there is a limit to which power can be injected into the distribution network without compromising the power quality and the system stability. This research is aiming to investigate this by applying DG technologies to the grid and keeping the system voltage within a defined boundary [0.95 - 1.05 p.u]. The requirements specified in IEEE Standard 1547 are considered. This research considers four objectives related to minimization of the system power loss, minimization of the deviations of the nodes voltage, minimization of branch current constraint violation, and minimization of feeder’s currents imbalance. The research formulates the problem as a multi-objective problem. The effectiveness of the proposed methods is demonstrated on different revised IEEE test systems including 16 and 33-bus radial distribution system.
23

Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA)

Perez Gallardo, Jorge Raúl 25 October 2013 (has links) (PDF)
Because of the increasing demand for the provision of energy worldwide and the numerous damages caused by a major use of fossil sources, the contribution of renewable energies has been increasing significantly in the global energy mix with the aim at moving towards a more sustainable development. In this context, this work aims at the development of a general methodology for designing PV systems based on ecodesign principles and taking into account simultaneously both techno-economic and environmental considerations. In order to evaluate the environmental performance of PV systems, an environmental assessment technique was used based on Life Cycle Assessment (LCA). The environmental model was successfully coupled with the design stage model of a PV grid-connected system (PVGCS). The PVGCS design model was then developed involving the estimation of solar radiation received in a specific geographic location, the calculation of the annual energy generated from the solar radiation received, the characteristics of the different components and the evaluation of the techno-economic criteria through Energy PayBack Time (EPBT) and PayBack Time (PBT). The performance model was then embedded in an outer multi-objective genetic algorithm optimization loop based on a variant of NSGA-II. A set of Pareto solutions was generated representing the optimal trade-off between the objectives considered in the analysis. A multi-variable statistical method (i.e., Principal Componet Analysis, PCA) was then applied to detect and omit redundant objectives that could be left out of the analysis without disturbing the main features of the solution space. Finally, a decision-making tool based on M-TOPSIS was used to select the alternative that provided a better compromise among all the objective functions that have been investigated. The results showed that while the PV modules based on c-Si have a better performance in energy generation, the environmental aspect is what makes them fall to the last positions. TF PV modules present the best trade-off in all scenarios under consideration. A special attention was paid to recycling process of PV module even if there is not yet enough information currently available for all the technologies evaluated. The main cause of this lack of information is the lifetime of PV modules. The data relative to the recycling processes for m-Si and CdTe PV technologies were introduced in the optimization procedure for ecodesign. By considering energy production and EPBT as optimization criteria into a bi-objective optimization cases, the importance of the benefits of PV modules end-of-life management was confirmed. An economic study of the recycling strategy must be investigated in order to have a more comprehensive view for decision making.
24

Performance evaluation of security mechanisms in Cloud Networks

Kannan, Anand January 2012 (has links)
Infrastructure as a Service (IaaS) is a cloud service provisioning model which largely focuses on data centre provisioning of computing and storage facilities. The networking aspects of IaaS beyond the data centre are a limiting factor preventing communication services that are sensitive to network characteristics from adopting this approach. Cloud networking is a new technology which integrates network provisioning with the existing cloud service provisioning models thereby completing the cloud computing picture by addressing the networking aspects. In cloud networking, shared network resources are virtualized, and provisioned to customers and end-users on-demand in an elastic fashion. This technology allows various kinds of optimization, e.g., reducing latency and network load. Further, this allows service providers to provision network performance guarantees as a part of their service offering. However, this new approach introduces new security challenges. Many of these security challenges are addressed in the CloNe security architecture. This thesis presents a set of potential techniques for securing different resource in a cloud network environment which are not addressed in the existing CloNe security architecture. The thesis begins with a holistic view of the Cloud networking, as described in the Scalable and Adaptive Internet Solutions (SAIL) project, along with its proposed architecture and security goals. This is followed by an overview of the problems that need to be solved and some of the different methods that can be applied to solve parts of the overall problem, specifically a comprehensive, tightly integrated, and multi-level security architecture, a key management algorithm to support the access control mechanism, and an intrusion detection mechanism. For each method or set of methods, the respective state of the art is presented. Additionally, experiments to understand the performance of these mechanisms are evaluated on a simple cloud network test bed. The proposed key management scheme uses a hierarchical key management approach that provides fast and secure key update when member join and member leave operations are carried out. Experiments show that the proposed key management scheme enhances the security and increases the availability and integrity. A newly proposed genetic algorithm based feature selection technique has been employed for effective feature selection. Fuzzy SVM has been used on the data set for effective classification. Experiments have shown that the proposed genetic based feature selection algorithm reduces the number of features and hence decreases the classification time, while improving detection accuracy of the fuzzy SVM classifier by minimizing the conflicting rules that may confuse the classifier. The main advantages of this intrusion detection system are the reduction in false positives and increased security. / Infrastructure as a Service (IaaS) är en Cloudtjänstmodell som huvudsakligen är inriktat på att tillhandahålla ett datacenter för behandling och lagring av data. Nätverksaspekterna av en cloudbaserad infrastruktur som en tjänst utanför datacentret utgör en begränsande faktor som förhindrar känsliga kommunikationstjänster från att anamma denna teknik. Cloudnätverk är en ny teknik som integrerar nätverkstillgång med befintliga cloudtjänstmodeller och därmed fullbordar föreställningen av cloud data genom att ta itu med nätverkaspekten.  I cloudnätverk virtualiseras delade nätverksresurser, de avsätts till kunder och slutanvändare vid efterfrågan på ett flexibelt sätt. Denna teknik tillåter olika typer av möjligheter, t.ex. att minska latens och belastningen på nätet. Vidare ger detta tjänsteleverantörer ett sätt att tillhandahålla garantier för nätverksprestandan som en del av deras tjänsteutbud. Men denna nya strategi introducerar nya säkerhetsutmaningar, exempelvis VM migration genom offentligt nätverk. Många av dessa säkerhetsutmaningar behandlas i CloNe’s Security Architecture. Denna rapport presenterar en rad av potentiella tekniker för att säkra olika resurser i en cloudbaserad nätverksmiljö som inte behandlas i den redan existerande CloNe Security Architecture. Rapporten inleds med en helhetssyn på cloudbaserad nätverk som beskrivs i Scalable and Adaptive Internet Solutions (SAIL)-projektet, tillsammans med dess föreslagna arkitektur och säkerhetsmål. Detta följs av en översikt över de problem som måste lösas och några av de olika metoder som kan tillämpas för att lösa delar av det övergripande problemet. Speciellt behandlas en omfattande och tätt integrerad multi-säkerhetsarkitektur, en nyckelhanteringsalgoritm som stödjer mekanismens åtkomstkontroll och en mekanism för intrångsdetektering. För varje metod eller för varje uppsättning av metoder, presenteras ståndpunkten för respektive teknik. Dessutom har experimenten för att förstå prestandan av dessa mekanismer utvärderats på testbädd av ett enkelt cloudnätverk. Den föreslagna nyckelhantering system använder en hierarkisk nyckelhantering strategi som ger snabb och säker viktig uppdatering när medlemmar ansluta sig till och medlemmarna lämnar utförs. Försöksresultat visar att den föreslagna nyckelhantering system ökar säkerheten och ökar tillgänglighet och integritet. En nyligen föreslagna genetisk algoritm baserad funktion valet teknik har använts för effektiv funktion val. Fuzzy SVM har använts på de uppgifter som för effektiv klassificering. Försök har visat att den föreslagna genetiska baserad funktion selekteringsalgoritmen minskar antalet funktioner och därmed minskar klassificering tiden, och samtidigt förbättra upptäckt noggrannhet fuzzy SVM klassificeraren genom att minimera de motstående regler som kan förvirra klassificeraren. De främsta fördelarna med detta intrångsdetekteringssystem är den minskning av falska positiva och ökad säkerhet.
25

Generator Maintenance Scheduling Models in Power Systems. Integrated Cost Models for Generator Maintenance Strategy under Market Environment.

Al-Arfaj, Khalid A. January 2009 (has links)
Change from a regulated to deregulated structure means that, the centralized maintenance system is not valid any more. In the surveyed published literature, there is not a single model which incorporates all maintenance cost components to analyze the effect of different maintenance strategies for generator companies (GENCOs). The work enclosed in this thesis demonstrates that there is a considerable requirement for accurately modelling cost components of the maintenance model, to be used in maintenance scheduling for deregulated power system, in order to attain a superior schedule with major financial and operational impact. This research investigates and models most cost factors that affect the maintenance activities of the deregulated GENCOs, and demonstrates the utilization of the developed cost models in maintenance scheduling. It also presents the data gathering process for the developed maintenance cost model. A generator maintenance scheduling model that considers direct and indirect maintenance costs, opportunity costs (i.e. loss of customer goodwill), effective maintenance strategies, failures, and interruptions is developed. A Genetic Algorithm (GA) based approach is employed to achieve maintenance schedules to various generators maintenance scenarios. An Analytical Hierarchy Process (AHP) approach is proposed for modelling customer goodwill. The maintenance model was redeveloped under the Reliability Centred Maintenance (RCM) strategy to analyze the effect of a maintenance strategy on maintenance costs. Case studies are presented to demonstrate the utilisation of the developed models.The investigation shows that the market prices, opportunity costs and maintenance strategy have an effect on the final maintenance schedule. The research demonstrates that the cost components are critical factors to achieve an effective maintenance schedule, and they must be considered and carefully modelled in order to reflect more realistic situation for maintenance scheduling of generator units in deregulation environment.
26

Design and implementation of band rejected antennas using adaptive surface meshing and genetic algorithms methods. Simulation and measurement of microstrip antennas with the ability of harmonic rejection for wireless and mobile applications including the antenna design optimisation using genetic algorithms.

Bin-Melha, Mohammed S. January 2013 (has links)
With the advances in wireless communication systems, antennas with different shapes and design have achieved great demand and are desirable for many uses such as personal communication systems, and other applications involving wireless communication. This has resulted in different shapes and types of antenna design in order to achieve different antenna characteristic. One attractive approach to the design of antennas is to suppress or attenuate harmonic contents due to the non-linear operation of the Radio Frequency (RF) front end. The objectives of this work were to investigate, design and implement antennas for harmonic suppression with the aid of a genetic algorithm (GA). Several microstrip patch antennas were designed to operate at frequencies 1.0, 1.8 and 2.4 GHz respectively. The microstrip patch antenna with stub tuned microstrip lines was also employed at 1.0 and 1.8 GHz to meet the design objectives. A new sensing patch technique is introduced and applied in order to find the accepted power at harmonic frequencies. The evaluation of the measured power accepted at the antenna feed port was done using an electromagnetic (EM) simulator, Ansoft Designer, in terms of current distribution. A two sensors method is presented on one antenna prototype to estimate the accepted power at three frequencies. The computational method is based on an integral equation solver using adaptive surface meshing driven by a genetic algorithm. Several examples are demonstrated, including design of coaxially-fed, air-dielectric patch antennas implanted with shorting and folded walls. The characteristics of the antennas in terms of the impedance responses and far field radiation patterns are discussed. The results in terms of the radiation performance are addressed, and compared to measurements. The presented results of these antennas show a good impedance matching at the fundamental frequency with good suppression achieved at the second and third harmonic frequencies. / Home government
27

Ultra-wideband antenna design for microwave imaging applications. Design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment.

Adnan, S. January 2012 (has links)
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR < 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.
28

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Abdalla, Alvaro Martins 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
29

Simultaneous Plant/Controller Optimization of Traction Control for Electric Vehicle

Tong, Kuo-Feng January 2007 (has links)
Development of electric vehicles is motivated by global concerns over the need for environmental protection. In addition to its zero-emission characteristics, an electric propulsion system enables high performance torque control that may be used to maximize vehicle performance obtained from energy-efficient, low rolling resistance tires typically associated with degraded road-holding ability. A simultaneous plant/controller optimization is performed on an electric vehicle traction control system with respect to conflicting energy use and performance objectives. Due to system nonlinearities, an iterative simulation-based optimization approach is proposed using a system model and a genetic algorithm (GA) to guide search space exploration. The system model consists of: a drive cycle with a constant driver torque request and a step change in coefficient of friction, a single-wheel longitudinal vehicle model, a tire model described using the Magic Formula and a constant rolling resistance, and an adhesion gradient fuzzy logic traction controller. Optimization is defined in terms of the all at once variable selection of: either a performance oriented or low rolling resistance tire, the shape of a fuzzy logic controller membership function, and a set of fuzzy logic controller rule base conclusions. A mixed encoding, multi-chromosomal GA is implemented to represent the variables, respectively, as a binary string, a real-valued number, and a novel rule base encoding based on the definition of a partially ordered set (poset) by delta inclusion. Simultaneous optimization results indicate that, under straight-line acceleration and unless energy concerns are completely neglected, low rolling resistance tires should be incorporated in a traction control system design since the energy saving benefits outweigh the associated degradation in road-holding ability. The results also indicate that the proposed novel encoding enables the efficient representation of a fix-sized fuzzy logic rule base within a GA.
30

Simultaneous Plant/Controller Optimization of Traction Control for Electric Vehicle

Tong, Kuo-Feng January 2007 (has links)
Development of electric vehicles is motivated by global concerns over the need for environmental protection. In addition to its zero-emission characteristics, an electric propulsion system enables high performance torque control that may be used to maximize vehicle performance obtained from energy-efficient, low rolling resistance tires typically associated with degraded road-holding ability. A simultaneous plant/controller optimization is performed on an electric vehicle traction control system with respect to conflicting energy use and performance objectives. Due to system nonlinearities, an iterative simulation-based optimization approach is proposed using a system model and a genetic algorithm (GA) to guide search space exploration. The system model consists of: a drive cycle with a constant driver torque request and a step change in coefficient of friction, a single-wheel longitudinal vehicle model, a tire model described using the Magic Formula and a constant rolling resistance, and an adhesion gradient fuzzy logic traction controller. Optimization is defined in terms of the all at once variable selection of: either a performance oriented or low rolling resistance tire, the shape of a fuzzy logic controller membership function, and a set of fuzzy logic controller rule base conclusions. A mixed encoding, multi-chromosomal GA is implemented to represent the variables, respectively, as a binary string, a real-valued number, and a novel rule base encoding based on the definition of a partially ordered set (poset) by delta inclusion. Simultaneous optimization results indicate that, under straight-line acceleration and unless energy concerns are completely neglected, low rolling resistance tires should be incorporated in a traction control system design since the energy saving benefits outweigh the associated degradation in road-holding ability. The results also indicate that the proposed novel encoding enables the efficient representation of a fix-sized fuzzy logic rule base within a GA.

Page generated in 0.1133 seconds