• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

兩階段特徵選取法在蛋白質質譜儀資料之應用 / A Two-Stage Approach of Feature Selection on Proteomic Spectra Data

王健源, Wang,Chien-yuan Unknown Date (has links)
藉由「早期發現,早期治療」的方式,我們可以降低癌症的死亡率。因此找出與癌症病變有關的生物標記以期及早發現與治療是一項重要的工作。本研究分析了包含正常人以及攝護腺癌症病人實際的蛋白質質譜資料,而這些蛋白質質譜資料是來自於表面強化雷射解吸電離飛行質譜技術(SELDI-TOF MS)的蛋白質晶片實驗。表面增強雷射脫附遊離飛行時間質譜技術可有效地留存生物樣本的蛋白質特徵。如果沒有經過適當的事前處理步驟以消除實驗雜訊,ㄧ 個質譜中可能包含多於數百或數千的特徵變數。為了加速對於可能的蛋白質生物標記的搜尋,我們只考慮可以區分癌症病人與正常人的特徵變數。 基因演算法是一種類似生物基因演化的總體最佳化搜尋機制,它可以有效地在高維度空間中去尋找可能的最佳解。本研究中,我們利用仿基因演算法(GAL)進行蛋白質的特徵選取以區分癌症病人與正常人。另外,我們提出兩種兩階段仿基因演算法(TSGAL),以嘗試改善仿基因演算法的缺點。 / Early detection and diagnosis can effectively reduce the mortality of cancer. The discovery of biomarkers for the early detection and diagnosis of cancer is thus an important task. In this study, a real proteomic spectra data set of prostate cancer patients and normal patients was analyzed. The data were collected from a Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (SELDI-TOF MS) experiment. The SELDI-TOF MS technology captures protein features in a biological sample. Without suitable pre-processing steps to remove experimental noise, a mass spectrum could consists of more than hundreds or thousands of peaks. To narrow down the search for possible protein biomarkers, only those features that can distinguish between cancer and normal patients are selected. Genetic Algorithm (GA) is a global optimization procedure that uses an analogy of the genetic evolution of biological organisms. It’s shown that GA is effective in searching complex high-dimensional space. In this study, we consider GA-Like algorithm (GAL) for feature selection on proteomic spectra data in classifying prostate cancer patients from normal patients. In addition, we propose two types of Two-Stage GAL algorithm (TSGAL) to improve the GAL.
32

OMPP para projeto conceitual de aeronaves, baseado em heurísticas evolucionárias e de tomadas de decisões / OMPP for conceptual design of aircraft based on evolutionary heuristics and decision making

Alvaro Martins Abdalla 30 October 2009 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de otimização multidisciplinar de projeto conceitual de aeronaves. O conceito de aeronave otimizada tem como base o estudo evolutivo de características das categorias imediatas àquela que se propõe. Como estudo de caso, foi otimizada uma aeronave de treinamento militar que faça a correta transição entre as fases de treinamento básico e avançado. Para o estabelecimento dos parâmetros conceituais esse trabalho integra técnicas de entropia estatística, desdobramento da função de qualidade (QFD), aritmética fuzzy e algoritmo genético (GA) à aplicação de otimização multidisciplinar ponderada de projeto (OMPP) como metodologia de projeto conceitual de aeronaves. Essa metodologia reduz o tempo e o custo de projeto quando comparada com as técnicas tradicionais existentes. / This work is concerned with the development of a methodology for multidisciplinary optimization of the aircraft conceptual design. The aircraft conceptual design optimization was based on the evolutionary simulation of the aircraft characteristics outlined by a QFD/Fuzzy arithmetic approach where the candidates in the Pareto front are selected within categories close to the target proposed. As a test case a military trainer aircraft was designed target to perform the proper transition from basic to advanced training. The methodology for conceptual aircraft design optimization implemented in this work consisted on the integration of techniques such statistical entropy, quality function deployment (QFD), arithmetic fuzzy and genetic algorithm (GA) to the weighted multidisciplinary design optimization (WMDO). This methodology proved to be objective and well balanced when compared with traditional design techniques.
33

Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) / Écoconception de systèmes photovoltaïques (PV) à grande échelle par optimisation multi-objectif et Analyse du Cycle de Vie (ACV)

Perez Gallardo, Jorge Raúl 25 October 2013 (has links)
En raison de la demande croissante d’énergie dans le monde et des nombreux dommages causés par l’utilisation des énergies fossiles, la contribution des énergies renouvelables a augmenté de manière significative dans le mix énergétique global dans le but de progresser vers un développement plus durable. Dans ce contexte, ce travail vise à l’élaboration d’une méthodologie générale pour la conception de systèmes photovoltaïques, basée sur les principes d’écoconception, en tenant compte simultanément des considérations technico-économiques et environnementales. Afin d’évaluer la performance environnementale des systèmes PV, une technique d’évaluation environnementale basée sur l’Analyse du Cycle de Vie (ACV) a été utilisée. Le modèle environnemental a été couplé d’une manière satisfaisante avec le modèle de conception d’un système PV connecté au réseau pour obtenir un modèle global, apte à un traitement par optimisation. Le modèle de conception du système PV résultant a été développé en faisant intervenir l’estimation du rayonnement solaire reçu dans une zone géographique concernée, le calcul de la quantité annuelle d’énergie produite à partir du rayonnement solaire reçu, les caractéristiques des différents composants et l’évaluation des critères technico-économiques à travers le temps de retour énergétique et le temps de retour sur investissement. Le modèle a ensuite été intégré dans une boucle d’optimisation multi-objectif externe basée sur une variante de l’algorithme génétique NSGA-II. Un ensemble de solutions du Pareto a été généré représentant le compromis optimal entre les différents objectifs considérés dans l’analyse. Une méthode basée sur une Analyse en Composantes Principales (ACP) est appliquée pour détecter et enlever les objectifs redondants de l’analyse sans perturber les caractéristiques principales de l’espace des solutions. Enfin, un outil d’aide à la décision basé sur M- TOPSIS a été utilisé pour sélectionner l’option qui offre un meilleur compromis entre toutes les fonctions objectifs considérées et étudiées. Bien que les modules photovoltaïques à base de silicium cristallin (c-Si) ont une meilleure performance vis-à-vis de la production d’énergie, les résultats ont montré que leur impact environnement est le plus élevé des filières technologiques de production de panneaux. Les technologies en « couches minces » présentent quant à elles le meilleur compromis dans tous les scénarios étudiés. Une attention particulière a été accordée aux processus de recyclage des modules PV, en dépit du peu d’informations disponibles pour toutes les technologies évaluées. La cause majeure de ce manque d’information est la durée de vie relativement élevée des modules photovoltaïques. Les données relatives aux procédés de recyclage pour les technologies basées sur CdTe et m-Si sont introduites dans la procédure d’optimisation par l’écoconception. En tenant compte de la production d’énergie et du temps de retour sur énergie comme critères d’optimisation, l’avantage de la gestion de fin de vie des modules PV a été confirmé. Une étude économique de la stratégie de recyclage doit être considérée et étudiée afin d’avoir une vision plus globale pour la prise de décision. / Because of the increasing demand for the provision of energy worldwide and the numerous damages caused by a major use of fossil sources, the contribution of renewable energies has been increasing significantly in the global energy mix with the aim at moving towards a more sustainable development. In this context, this work aims at the development of a general methodology for designing PV systems based on ecodesign principles and taking into account simultaneously both techno-economic and environmental considerations. In order to evaluate the environmental performance of PV systems, an environmental assessment technique was used based on Life Cycle Assessment (LCA). The environmental model was successfully coupled with the design stage model of a PV grid-connected system (PVGCS). The PVGCS design model was then developed involving the estimation of solar radiation received in a specific geographic location, the calculation of the annual energy generated from the solar radiation received, the characteristics of the different components and the evaluation of the techno-economic criteria through Energy PayBack Time (EPBT) and PayBack Time (PBT). The performance model was then embedded in an outer multi-objective genetic algorithm optimization loop based on a variant of NSGA-II. A set of Pareto solutions was generated representing the optimal trade-off between the objectives considered in the analysis. A multi-variable statistical method (i.e., Principal Componet Analysis, PCA) was then applied to detect and omit redundant objectives that could be left out of the analysis without disturbing the main features of the solution space. Finally, a decision-making tool based on M-TOPSIS was used to select the alternative that provided a better compromise among all the objective functions that have been investigated. The results showed that while the PV modules based on c-Si have a better performance in energy generation, the environmental aspect is what makes them fall to the last positions. TF PV modules present the best trade-off in all scenarios under consideration. A special attention was paid to recycling process of PV module even if there is not yet enough information currently available for all the technologies evaluated. The main cause of this lack of information is the lifetime of PV modules. The data relative to the recycling processes for m-Si and CdTe PV technologies were introduced in the optimization procedure for ecodesign. By considering energy production and EPBT as optimization criteria into a bi-objective optimization cases, the importance of the benefits of PV modules end-of-life management was confirmed. An economic study of the recycling strategy must be investigated in order to have a more comprehensive view for decision making.
34

Écoconception de procédés : approche systémique couplant modélisation globale, analyse du cycle de vie et optimisation multiobjectif / Eco-design of chemical processes : an integrated approach coupling process modeling, life cycle assessment and multi-objective optimization

Morales Mendoza, Luis Fernando 04 December 2013 (has links)
L’objectif de ce travail est de développer un cadre méthodologique et générique d’éco-conception de procédés chimiques couplant des outils de modélisation et de simulation traditionnels de procédés (HYSYS, COCO, ProSimPlus et Ariane), d’Analyse du Cycle de Vie (ACV), d’optimisation multiobjectif basée sur des Algorithmes Génétiques et enfin des outils d’aide à la décision multicritère (ELECTRE, PROMETHEE, M-TOPSIS). Il s’agit de généraliser, d’automatiser et d’optimiser l’évaluation des impacts environnementaux au stade préliminaire de la conception d’un procédé chimique. L’approche comprend trois étapes principales. Les deux premières correspondent d’une part aux phases d’analyse de l’inventaire par calcul des bilans de matière et d’énergie et d’autre part à l’évaluation environnementale par ACV. Le problème du manque d’information ou de l’imprécision dans les bases de données classiques en ACV pour la production d’énergie notamment sous forme de vapeur largement utilisée dans les procédés a reçu une attention particulière. Une solution proposée consiste à utiliser un simulateur de procédés de production d’utilités (Ariane, ProSim SA) pour contribuer à alimenter la base de données environnementale en tenant compte de variations sur les conditions opératoires ou sur les technologies utilisées. Des sous-modules « énergie » sont ainsi proposés pour calculer les émissions relatives aux impacts liés à l’utilisation de l’énergie dans les procédés. La troisième étape réalise l’interaction entre les deux premières phases et l’optimisation multi-objectif qui met en jeu des critères économiques et environnementaux. Elle conduit à des solutions de compromis le long du front de Pareto à partir desquelles les meilleures sont choisies à l’aide de méthodes d’aide à la décision. L’approche est appliquée à des procédés de production continus : production de benzène par hydrodéalkylation du toluène HDA et production de biodiesel à partir d’huiles végétales. Une stratégie à plusieurs niveaux est mise en oeuvre pour l'analyse de l'optimisation multi-objectif. Elle est utilisée dans les deux cas d'étude afin d'analyser les comportements antagonistes des critères. / The objective of this work is to propose an integrated and generic framework for eco-design coupling traditional modelling and flowsheeting simulation tools (HYSYS, COCO, ProSimPlus and Ariane), Life Cycle Assessment, multi-objective optimization based on Genetic Algorithms and multiple criteria decision-making methods MCDM (Multiple Choice Decision Making, such as ELECTRE, PROMETHEE, M-TOPSIS) that generalizes, automates and optimizes the evaluation of the environmental criteria at earlier design stage. The approach consists of three main stages. The first two steps correspond respectively to process inventory analysis based on mass and energy balances and impact assessment phases of LCA methodology. Specific attention is paid to the main issues that can be encountered with database and impact assessment i.e. incomplete or missing information, or approximate information that does not match exactly the real situation that may introduce a bias in the environmental impact estimation. A process simulation tool dedicated to production utilities, Ariane, ProSim SA is used to fill environmental database gap, by the design of specific energy sub modules, so that the life cycle energy related emissions for any given process can be computed. The third stage of the methodology is based on the interaction of the previous steps with process simulation for environmental impact assessment and cost estimation through a computational framework. The use of multi-objective optimization methods generally leads to a set of efficient solutions, the so-called Pareto front. The next step consists in identifying the best ones through MCDM methods. The approach is applied to two processes operating in continuous mode. The capabilities of the methodology are highlighted through these case studies (benzene production by HDA process and biodiesel production from vegetable oils). A multi-level assessment for multi-objective optimization is implemented for both cases, the explored pathways depending on the analysis and antagonist behaviour of the criteria.
35

MODELING FATIGUE BEHAVIOR OF ADDITIVELY MANUFACTURED NI-BASED SUPERALLOYS VIA CRYSTAL PLASTICITY

Veerappan Prithivirajan (8464098) 17 April 2020 (has links)
Additive manufacturing (AM) introduces high variability in the microstructure and defect distributions, compared with conventional processing techniques, which introduces greater uncertainty in the resulting fatigue performance of manufactured parts. As a result, qualification of AM parts poses as a problem in continued adoption of these materials in safety-critical components for the aerospace industry. Hence, there is a need to develop precise and accurate, physics-based predictive models to quantify the fatigue performance, as a means to accelerate the qualification of AM parts. The fatigue performance is a critical requirement in the safe-life design philosophy used in the aerospace industry. Fatigue failure is governed by the loading conditions and the attributes of the material microstructure, namely, grain size distribution, texture, and defects. In this work, the crystal plasticity finite element (CPFE) method is employed to model the microstructure-based material response of an additively manufactured Ni-based superalloy, Inconel 718 (IN718). Using CPFE and associated experiments, methodologies were developed to assess multiple aspects of the fatigue behavior of IN718 using four studies. In the first study, a CPFE framework is developed to estimate the critical characteristics of porosity, namely the pore size and proximity that would cause a significant debit in the fatigue life. The second study is performed to evaluate multiple metrics based on plastic strain and local stress in their ability to predict both the modes of failure as seen in fractography experiments and estimate the scatter in fatigue life due to microstructural variability as obtained from fatigue testing. In the third study, a systematic analysis was performed to investigate the role of the simulation volume and the microstructural constraints on the fatigue life predictions to provide informed guidelines for simulation volume selection that is both computationally tractable and results in consistent scatter predictions. In the fourth study, validation of the CPFE results with the experiments were performed to build confidence in the model predictions. To this end, 3D realistic microstructures representative of the test specimen were created based on the multi-modal experimental data obtained from high-energy diffraction experiments and electron backscatter diffraction microscopy. Following this, the location of failure is predicted using the model, which resulted in an unambiguous one to one correlation with the experiment. In summary, the development of microstructure-sensitive predictive methods for fatigue assessment presents a tangible step towards the adoption of model-based approaches that can be used to compliment and reduce the overall number of physical tests necessary to qualify a material for use in application.

Page generated in 0.0439 seconds