• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 42
  • 34
  • 20
  • 16
  • 13
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 6
  • 4
  • Tagged with
  • 593
  • 593
  • 144
  • 86
  • 83
  • 83
  • 73
  • 70
  • 56
  • 53
  • 51
  • 51
  • 49
  • 41
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

The commercialization of biotechnology : the politics

Grossmann, Robert S January 1989 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1989. / Includes bibliographical references (leaves 211-229) / Microfiche. / ix, 229 leaves, bound 29 cm
302

Transfer of plasmids by genetically-engineered Erwinia carotovora

Comeaux, Jay Louis 21 November 2012 (has links)
The ability of a genetically-engineered <i>Erwirzia carotovora</i> subsp. <i>carotovora</I> (Ecc) strain to transfer recombinant chromosomal DNA or plasmids to wildtype Ecc or <i>Pseudomonas fluorescens</i> was tested on filters, within soil microcosms, and <i>in planta</i>. Ecc was engineered by chromosomal insertion of a disarmed <i>endo</i>-pectate lyase gene marked with a 1.4kb DNA fragment conferring kanamycin resistance. Plasmids RPI and pBR322 were introduced separately into engineered Ecc clones. These strains served as donors in genetic transfer experiments. No transfer of the inserted kan marker or of pBR322 was observed under any experimental condition. In filter matings, RPI was transferred to wildtype Ecc at a frequency of 3.6 X 10⁻² transconjugants per donor (TPD) and to P. <i>fluorescens</i> at a frequency of 2.4 X 10⁻⁵ TPD. In matings conducted in potato tubers inoculated using sewing needles, the respective frequencies were 4.0 X 10⁻³ and 2.0 X 10⁻³, while matings on potato slices yielded frequencies of 4.7 X 10⁻² and 2.3 X 10⁻². In soil microcosms, the maximum transfer frequencies observed were 2.3 X 10³ and 8.4 X 10⁻⁵ TPD. / Master of Science
303

Investigation of resveratrol production by genetically engineered Saccharomyces cerevisiae strains

Trollope, Kim 12 1900 (has links)
Thesis (MSc (Wine Biotechnology))--University of Stellenbosch, 2006. / Resveratrol is a phytoalexin that is produced in the leaves and skins of grape berries in response to biotic and abiotic factors. Substitution and polymerisation of resveratrol units produce an array of compounds which form part of the active disease defence mechanism in grapevine. Wine is one of the major sources of resveratrol in the human diet. Resveratrol is one of the phenolic compounds present in wine that mediates protective effects on human health. It has been shown to prevent the development of cardiovascular disease, cancer and pathogenesis related to inflammation. Red wines contain higher levels of resveratrol than white wines owing to extended maceration times during fermentation on the skins. During white wine vinification skin contact is limited as skins are removed prior to fermentation. Thus, the extraction of resveratrol into white wines is minimal. The principal focus of our research is the development of a wine yeast strain capable of resveratrol production during grape must fermentation. It is proposed that red and white wines produced with such a resveratrol-producing yeast will contain elevated levels of resveratrol, and that added health benefits may be derived from their consumption. Initial work done in our laboratory established that expressing multiple copies of the genes encoding coenzyme A ligase (4CL216) and resveratrol synthase (vst1) in laboratory yeast enabled the yeast to produce resveratrol, conditional to the supplementation of the growth medium with p-coumaric acid. This study focused on the optimisation of resveratrol production in Saccharomyces cerevisiae. It involved the integration and constitutive expression of 4CL216 from hybrid poplar and vst1 from grapevine. Integration and expression of these genes in three laboratory strains was confirmed by Southern and Northern blot analyses. The evaluation of resveratrol production by yeast required the initial optimisation of the analytical techniques. We optimised the method for sample preparation from the intracellular fraction of yeast and devised a procedure for the assay of the extracellular fractions. The LCMSMS method was further developed to encompass detection and quantification of other compounds related to resveratrol production in yeast. Comparison of resveratrol production in three different yeast genetic backgrounds indicated that the onset of production and the resveratrol yield is yeast strain dependent. Precursor feeding studies indicated that p-coumaric acid availability was a factor limiting maximal resveratrol production. Early indications were obtained that endogenously-produced resveratrol may have an impact on yeast viability during extended culture periods. This study has broadened our understanding of the resveratrol production dynamics in S. cerevisiae and provided important indications as to where further optimisation would be beneficial in order to optimally engineer a wine yeast for maximal resveratrol production.
304

Genetic manipulation of sucrose-storing tissue to produce alternative products

Nell, Hanlie 03 1900 (has links)
The main aim of the work presented in this dissertation was to explore the possibility to genetically manipulate the sucrose storing crops, sugarcane and sweet sorghum, to convert their sucrose reserves into higher-value alternatives. For the purpose of this study we focussed on fructans as alternative sucrose-based high-value carbohydrates, since these fructose polymers are of significant commercial interest. To investigate the technical feasibility of transforming sugarcane and sweet sorghum to produce this novel carbohydrate, we proposed to transfer the fructosyltransferase genes from Cynara scolymus into these plants by means of particle bombardment. In order to apply this technology to sweet sorghum, an in vitro culture system suitable for transformation had to be established. For this purpose an extensive screening process with different combinations of variables were conducted. Though the relationships between these variables proved to be complex, it was concluded that immature zygotic embryos could be used to initiate a genotype-independent totipotent regeneration system with a 65% callus induction rate, provided that initiation takes place during summer. Stable transformation and regeneration of these calli were however not successful and will have to be optimised to allow future applications. By introducing fructosyltransferase genes into sugarcane, we succeeded in transforming sugarcane into a crop that produces a variety of fructans of the inulintype. Low molecular weight (LMW) inulins were found to accumulate in the mature internodes of 42% of the transgenic sugarcane plants expressing the sucrose:sucrose 1-fructosyltransferase (1-SST) gene, and in 77% of the plants that incorporated both 1-SST and fructan:fructan 1-fructosyltransferase (1-FFT), while only 8% of these plants accumulated high molecular weight (HMW) inulins. Our results demonstrated that sugarcane could be manipulated to synthesise and accumulate fructans without the induction of phenotypical irregularities. Inulins with a degree of polymerisation up to 60 were found in sugarcane storage tissue. In these HMW inulin-producing plants, up to 78% of the endogenous sucrose in the mature sugarcane culm was converted to inulin. This enabled inulin accumulation up to 165.3 mg g-1 fresh weight (FW), which is comparable to that found in native plants. These transgenic sugarcane plants, therefore exhibit great potential as a future industrial inulin source. Fructan production was detected in all the sugarcane plant tissue tested, predominantly as 1-kestose. In contrast with the fact that fructan accumulation in leaves did not affect the endogenous sucrose concentrations in these organs, the sucrose content of mature internodes that accumulated high levels of 1-kestose was severely reduced. However, increases in total sugar content, in some instances up to 63% higher than control plants, were observed. This phenomenon was investigated with the use of radio-labelled-isotopes. An increase in the allocation of incoming carbon towards sucrose storage, resulting in higher carbon partitioning into both 1- kestose and sucrose, were detected in the culms of transgenic compared to control lines. This modification therefore established an extra carbohydrate sink in the vacuoles that affected photosynthate partitioning and increased total soluble sugar content. The data suggests that sucrose sensing is the main regulatory mechanism responsible for adapting carbon flow in the cells to maintain sucrose concentration.
305

Human dignity and animal well-being a Kantian contribution to biomedical ethics /

Hansson, Mats G. January 1991 (has links)
Thesis (doctoral)--Uppsala University, 1991. / Includes bibliographical references (p. 201-207) and index.
306

Human dignity and animal well-being a Kantian contribution to biomedical ethics /

Hansson, Mats G. January 1991 (has links)
Thesis (doctoral)--Uppsala University, 1991. / Includes bibliographical references (p. 201-207) and index.
307

Bioethics for the masses the negotiation of bioethics in film and fiction /

Smith, Tonja. January 2008 (has links)
Thesis (M.A.)--University of Wyoming, 2008. / Title from PDF title page (viewed on Nov. 11, 2009). Includes bibliographical references (p. 89-90).
308

Xylanase hyper-producer : the genome of the thermophilic fungus Thermomyces lanuginosus

Mchunu, Nokuthula Peace 08 August 2014 (has links)
Submitted in complete fulfillment of the requirements for the Degree of Doctor of Technology: Biotechnology, Durban University of Technology, Durban, South Africa. 2014. / The global demand for green technology has created a need to search for microbes that can play an active role in advancing a greener and cleaner future. Microbial enzymes are nature’s keys to life and their efficiency, specificity and environmental-friendliness has lead to their increased use in industrial processes. Thermomyces lanuginosus is a thermophilic fungus that can degrade plant biomass and produces a variety of enzymes that have industrial application. The fungus T. lanuginosus SSBP has been reported in literature to produce the highest level of xylanase among other Thermomyces strains and some of its enzyme s viz., amylase and lipase are already being used. Because of this ability, it has been identified as one of the organisms that can have various industrial applications. Although a few proteins from this fungus have been cloned and used commercially, the vast majority are still unknown. In order to identify new protein candidates and understand their biochemical interactions, the T. lanuginosus genome (DNA) and the transcriptome (mRNA) were sequenced using 454 Roche and Solexa sequencing platforms. Genome and transcriptome data was assembled using Newbler software forming a genome size of 23.3 Mb contained 30 scaffolds. Protein prediction identified 5105 candidates as protein-coding genes and these gene models were supported by expressed sequence tag and transcriptomic data. The annotated data was assembled into metabolic pathways in order to identify functional pathways and validate the accuracy of the annotation process. T. lanuginosus is usually found in composting plant material thus protein related to plant hydrolysis were analysed. The total number of plant biomass-degrading and related proteins that fall into the carbohydrate-active enzyme (CAZy) family was 224. Most of these proteins were similar to proteins found in other filamentous fungi. Surprisingly, T. lanuginosus contained a single gene coding for xylanase which hydrolyses xylan although this organism is well known for being among the highest producers of this enzyme. An important subset of the above group of proteins is the cellulose degrading-proteins as this can be used in biofuel production. Eight candidates belonging to this group were identified, making this fungus significant in the biofuels. Among the eight cellulase candidates, phylogenetic analysis revealed that three of them were closely related to Trichoderma reesei, a well known industrial cellulase-producer. Utilization of cellulase-related compounds was validated by phenotypic microarray experiments, with cellobiose having inducing biomass in T. lanuginosus. Proteins that are involved in high temperature survival are vital for the survival. of this thermophilic fungus. Interestingly, T. lanuginosus contains 19 heat shocking proteins which are responsible for thermostability. Another adaptation identified in this fungus is the accumulation of trehalose to combat heat stress. Furthermore, T. lanuginosus contains the highest reported number methyltransferases, which have been linked to producing thermostable proteins and higher energy production. Also because of this organism’s ability to grow on composting environments, the assimilation and ability to produce biomass on different carbon sources were analysed using phenotypic microarray technique. The results showed that xylose was the best compound to induce biomass followed by trehalose, maltose and maltotriose. The genomic sequencing of this fungus has provided valuable information that can be used for various biotechnological applications, as well as providing greater insights into its thermostability. Understanding the metabolic pathways involved may allow for manipulation to increase production of these enzymes or cloning into other hosts. This can have an impact in the field of biofuel production and other plant biomass-related processes.
309

Expression of a modified xylanase in yeast

Mchunu, Nokuthula Peace January 2009 (has links)
Submitted in fulfillment for the requirement of a Degree of Master of Technology: Biotechnology, in the Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa, 2009. / Protein engineering has provided a key for adapting naturally-occurring enzymes for industrial processes. However, several obstacles have to be overcome after these proteins have been adapted, the main one being finding a suitable host to over-express these recombinant protein. This study investigated Saccharomyces cerevisiae, Pichia pastoris and Escherichia coli as suitable expression hosts for a previously modified fungal xylanase, which is naturally produced by the filamentous fungus, Thermomyces lanuginosus. A xylanase variant, NC38, that was made alkaline-stable using directed evolution was cloned into four different vectors: pDLG1 with an ADH2 promoter and pJC1 with a PGK promoter for expression in S. Cerevisiae, pBGP1 with a GAP promoter for expression in P. pastoris and pET22b(+) for expression in E. Coli BL21 (DE3). S. Cerevisiae clones with the p DLG1-NC38 combination showed very low activity on the plate assay and were not used for expression in liquid media as the promoter was easily repressed by reducing sugars used during production experiments. S. cerevisiae clones carrying pJC1-NC38 were grown in media without uracil while P. Pastoris clones were grown in YPD containing the antibiotic, zeocin and E. Coli clones were grown in LB with ampicillin. The levels of xylanase expression were then compared between P. Pastoris, S. cerevisiae and E. coli. The highest recombinant xylanase expression was observed in P. Pastoris with 261.7U/ml, followed by E.coli with 47.9 U/ml and lastly S. cerevisiae with 13.2 U/ml. The localization of the enzyme was also determined. In the methylotrophic yeast, P. Pastoris, the enzyme was secreted into the culture media with little or no contamination from the host proteins, while the in other hosts, the xylanase was located intracellularly. Therefore in this study, a mutated alkaline stable xylanase was successfully expressed in P. Pastoris and was also secreted into the culture medium with little or no contamination by host proteins, which favours the application of this enzyme in the pulp and paper industry. / National Research Foundation
310

Overexpression and partial characterization of a modified fungal xylanase in Escherichia coli

Wakelin, Kyle January 2009 (has links)
Submitted in complete fulfillment for the Degree of Master of Technology (Biotechnology)in the Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa, 2009. / Protein engineering has been a valuable tool in creating enzyme variants that are capable of withstanding the extreme environments of industrial processes. Xylanases are a family of hemicellulolytic enzymes that are used in the biobleaching of pulp. Using directed evolution, a thermostable and alkaline stabl xylanase variant (S340) was created from the thermophilic fungus, Thermomyces lanuginosus. However, a host that was capable of rapid growth and high-level expression of the enzyme in large amounts was required. The insert containing the xylanase gene was cloned into a series a pET vectors in Escherichia coli BL21 (DE3) pLysS and trimmed from 786 bp to 692 bp to remove excess fungal DNA upstream and downstream of the open reading frame (ORF). The gene was then re-inserted back into the pET vectors. Using optimized growth conditions and lactose induction, a 14.9% increase in xylanase activity from 784.3 nkat/ml to 921.8 nkat/ml was recorded in one of the clones. The increase in expression was most probably due to the removal of fungal DNA between the vector promoter and the start codon. The distribution of the xylanase in the extracellular, periplasmic and cytoplasmic fractions was 17.3%, 51.3% and 31.4%, respectively. The modified enzyme was then purified to electrophoretic homogeneity using affinity chromatography. The xylanase had optimal activity at pH 5.5 and 70°C. After 120 min at 90°C and pH 10, S340 still displayed 39% residual activity. This enzyme is therefore well suited for its application in the pulp and paper industry. / National Research Foundation

Page generated in 0.08 seconds