Spelling suggestions: "subject:"1genetic algorithm"" "subject:"cogenetic algorithm""
161 |
Structural analysis and optimized design of general nonprismatic I-section membersJeong, Woo Yong 12 January 2015 (has links)
Tapered I-section members have been employed widely for the design of long-span structures such as large clear-span buildings, stadiums, and bridges because of their structural efficiency. For optimized member design providing maximum strength and stiffness at minimum cost, general non-prismatic (tapered and/or stepped cross-sections) as well as singly-symmetric cross-sections have been commonly employed. Fabricators equipped to produce web-tapered members can create a wide range of optimized members from a minimal stock of different plates and coil. Linearly tapered web plates can be nested to minimize scrap. In many cases, the savings in material and manufacturing efficiencies lead to significant cost savings relative to the use of comparable rolled shapes. To employ Design Guide 25 (DG25) which provides guidance for the application of the provisions of the AISC Specification to the design of frames composed of general non-prismatic members, designers need a robust and general capability for determining the elastic buckling loads. Furthermore, robust tools are needed to facilitate the selection of optimum non-prismatic member designs based on minimum cost.
This research addresses the calculation of the elastic buckling loads for general non-prismatic members subjected to general loadings and bracing conditions (typically involving multiple brace points along a given member). This research develops an elastic buckling analysis tool (SABRE2) that can be used to define general geometries, loadings and bracing conditions and obtain a rigorous calculation of the elastic buckling load levels. The three-dimensional finite element equations using open section thin-walled beam theory are derived and formulated using a co-rotational approach including load height effects of transverse loads, stepped flange dimensions, and bracing and support height effects. In addition, this research addresses an algorithmic means to obtain automatic optimized member and frame designs using the above types of members based on Genetic Algorithms (GA). These capabilities are implemented in the tool SABRE2D, which provides a graphical user interface for optimized member and frame design based on updated DG25 provisions and the elastic buckling load calculations from SABRE2.
|
162 |
Resource Allocation for OFDMA-based multicast wireless systemsNgo, Duy Trong 11 1900 (has links)
Regarding the problems of resource allocation in OFDMA-based wireless communication systems, much of the research effort mainly focuses on finding efficient power control and subcarrier assignment policies. With systems employing multicast transmission, the available schemes in literature are not always applicable. Moreover, the existing approaches are particularly inaccessible in practical systems in which there are a large number of OFDM subcarriers being utilized, as the required computational burden is prohibitively high. The ultimate goal of this research is therefore to propose affordable mechanisms to flexibly and effectively share out the available resources in multicast wireless systems deploying OFDMA technology. Specifically, we study the resource distribution problems in both conventional and cognitive radio network settings, formulating the design problems as mathematical optimization programs, and then offering the solution methods. Suboptimal and optimal schemes with high performance and yet of acceptable complexity are devised through the application of various mathematical optimization tools such as genetic algorithm and Lagrangian dual optimization. The novelties of the proposed approaches are confirmed, and their performances are verified by computer simulation with the presentation of numerical examples to support the findings. / Communications
|
163 |
Optimized feature selection using NeuroEvolution of Augmenting Topologies (NEAT)Sohangir, Soroosh 01 December 2011 (has links)
AN ABSTRACT OF THE THESIS OF SOROOSH SOHANGIR, for the MASTER OF SCIENCE degree in COMPUTER SCIENCE, presented on 9 th November 2011, at Southern Illinois University Carbondale. TITLE: OPTIMIZED FEATURE SELECTION USING NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT) MAJOR PROFESSOR: Dr. Shahram Rahimi Feature selection using the NeuroEvolution of Augmenting Topologies (NEAT) is a new approach. In this thesis an investigation had been carried out for implementation based on optimization of the network topology and protecting innovation through the speciation which is similar to what happens in nature. The NEAT is implemented through the JNEAT package and Utans method for feature selection is deployed. The performance of this novel method is compared with feature selection using Multilayer Perceptron (MLP) where Belue, Tekto, and Utans feature selection methods is adopted. According to unveiled data from this thesis the number of species, the training, accuracy and number of hidden neurons are notably improved as compared with conventional networks. For instance the time is reduced by factor of three.
|
164 |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular / A biased random key genetic algorithm for the molecular docking problemOliveira, Eduardo Spieler de January 2016 (has links)
O Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular. / Molecular Docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A Molecular Docking simulation starts with a receptor and ligand unbounded structures and the algorithm tests hundreds of thousands of ligands conformations and orientations to find the best receptor-ligand binding affinity by assigning and optimizing an energy function. Despite the advances in the conception of methods and computational strategies for search the best protein-ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the Molecular Docking problem are clearly needed. We developed a Biased Random-Key Genetic Algorithm as a sampling strategy to search the protein-ligand conformational space. The proposed method has been tested on a selection of protein-ligand complexes and compared with existing tools AutodockVina and Dockthor. Compared with other traditional docking software, the proposed method has the best average Root-Mean-Square Deviation. Structural results were statistically analyzed. The proposed method proved to be efficient and a good alternative to the molecular docking problem.
|
165 |
Metodologia para utilização de algoritmos genéticos em modelos de simulação computacional em ambientes de manufaturaPinho, Alexandre Ferreira de [UNESP] 19 December 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:40Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-12-19Bitstream added on 2014-06-13T20:46:42Z : No. of bitstreams: 1
pinho_af_dr_guara.pdf: 1635741 bytes, checksum: d8dc3d0b8a67932941a332b122ed1672 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Métodos de otimização combinados com a simulação computacional a eventos discretos têm sido utilizados em diversas aplicações na manufatura. Entretanto, estes métodos possuem baixo desempenho, em relação ao tempo computacional, ao manipularem mais de uma variável de decisão. Desta forma, o objetivo desta tese de doutorado é propor um método para otimização de modelos de simulação a eventos discretos com maior eficiência em relação ao tempo de processamento quando comparado a uma ferramenta comercial conhecida. Cabe ressaltar que a qualidade da variável de resposta não será alterada, ou seja, o método proposto manterá a eficácia das soluções encontradas. Será mostrado que a melhora neste desempenho é obtida através de uma melhor percepção do comportamento dos parâmetros existentes nos algoritmos genéticos, em especial o parâmetro tamanho da população. A comparação entre o método desenvolvido com a ferramenta de otimização existente no mercado se dará através de uma metodologia já consolidada disponível na literatura. As conclusões serão apresentadas comprovando a eficácia do método proposto. / Optimization methods combined with discrete events simulation have been used in many manufacturing applications. However, these methods have poor performance considering the computational time, when manipulating more than one decision variable. In this way, the aim of this thesis is to propose a method for optimizing discrete events simulation models with higher efficiency in relation to the processing time when compared to a known commercial tool. Besides, the optimization quality will not be altered, i. e., the proposed method will keep the effectiveness of the achieved solutions. It will be shown that the performance improvement is obtained by means of a better perception of the behavior of all parameters presented in the genetic algorithms, particularly the population size parameter. The comparison between the developed method and the optimization tool will be accomplished by means of a consolidated methodology available in the simulation literature. The conclusions will be presented proving the effectiveness of the developed method.
|
166 |
A New Genetic Algorithm for Continuous Structural OptimizationJanuary 2015 (has links)
abstract: In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation formation.
Some popular examples, including two variable function optimization and simple truss models are used to test this algorithm. In these study, the new genetic algorithm is proved able to find the optimized results like other algorithms.
Besides, the author also tried to build one more complex truss model. After tests, the new genetic algorithm can produce a good and reasonable optimized result. Form the results, the rebuilding, crossover and mutation can the jobs as designed.
At last, the author also discussed two possible points to improve this new genetic algorithm: the population size and the algorithm flexibility. The simple result of 2D finite element optimization showed that the effectiveness could be better, with the improvement of these two points. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2015
|
167 |
Otimização de sistema dinâmico de suspensão veicular eletromecânica utilizando algoritmo genético / Optimization of dynamical system of electromechanical vehicle suspension using genetic algorithmOliveira Junior, Jaime Ayres [UNESP] 02 June 2016 (has links)
Submitted by JAIME AYRES DE OLIVEIRA JUNIOR null (jaime.oliveira@hotmail.com.br) on 2016-07-22T04:35:50Z
No. of bitstreams: 1
2016 07 22 Msc - Oliveria - Dissertação Final.pdf: 2108988 bytes, checksum: a6e2312b794bd367675f203f7d27a138 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-28T13:42:33Z (GMT) No. of bitstreams: 1
oliveirajunior_ja_me_bauru.pdf: 2108988 bytes, checksum: a6e2312b794bd367675f203f7d27a138 (MD5) / Made available in DSpace on 2016-07-28T13:42:33Z (GMT). No. of bitstreams: 1
oliveirajunior_ja_me_bauru.pdf: 2108988 bytes, checksum: a6e2312b794bd367675f203f7d27a138 (MD5)
Previous issue date: 2016-06-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é analisar o comportamento dinâmico de um sistema de suspensão eletromecânica aplicado a veículos, aplicando um algoritmo genético para maximizar o conforto dos passageiros e maximizar a energia recuperada através do subsistema elétrico. Em sistemas de suspensão mecânica, a energia vibratória é dissipada, por exemplo, em um amortecedor viscoso. É utilizado um modelo de quarto de carro com dois graus de liberdade para expressar a dinâmica vertical do sistema. Utiliza-se a equação de Euler-Lagrange para relacionar os tipos de energia envolvidos (cinética, potencial, elétrica e magnética) para escrever as equações dinâmicas do sistema. O modelo é constituído de dois domínios, um mecânico, do qual fazem parte massa e rigidez, e um elétrico, do qual faz parte um circuito RLC. Os dois domínios são associados através de um transdutor. Neste caso, uma bobina converte o movimento do subsistema mecânico em corrente elétrica no subsistema elétrico. Devido ao grande número de parâmetros e à existência de múltiplos objetivos, opta-se por utilizar um algoritmo genético para realizar a otimização do sistema de suspensão. O desempenho do algoritmo de otimização é analisada observando-se convergência e exploração do espaço de busca. Os resultados são obtidos através de expressões analíticas e simulações numéricas. / The objective of this study is to analyze the dynamic behavior of an electromechanical suspension system applied to vehicles, applying a genetic algorithm to maximize passenger comfort and to maximize the energy recovered through the electrical subsystem. In mechanical suspension systems, vibration energy is dissipated, for example, by a viscous damper. A quarter car model with two degrees of freedom is used to express the vertical dynamics of the system. The Euler-Lagrange equations are used to relate the types of energy involved (kinetic, potential, electrical and magnetic) to write the dynamic equations of the system. The model consists of two domains, a mechanic, which comprises mass and stiffness, and an electric, a RLC circuit. The two subsystems are associated with a transducer. In this case, a moving coil converts the movement of the mechanical subsystem in electrical current in the electrical subsystem. Due to the large number of parameters and the existence of multiple objectives, it is chosen to use a genetic algorithm to perform optimization of the suspension system. The performance of the optimization algorithm is analyzed observing convergence and search space exploration. The results are obtained by analytical expressions and numeric simulations.
|
168 |
Um algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecular / A biased random key genetic algorithm for the molecular docking problemOliveira, Eduardo Spieler de January 2016 (has links)
O Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular. / Molecular Docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A Molecular Docking simulation starts with a receptor and ligand unbounded structures and the algorithm tests hundreds of thousands of ligands conformations and orientations to find the best receptor-ligand binding affinity by assigning and optimizing an energy function. Despite the advances in the conception of methods and computational strategies for search the best protein-ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the Molecular Docking problem are clearly needed. We developed a Biased Random-Key Genetic Algorithm as a sampling strategy to search the protein-ligand conformational space. The proposed method has been tested on a selection of protein-ligand complexes and compared with existing tools AutodockVina and Dockthor. Compared with other traditional docking software, the proposed method has the best average Root-Mean-Square Deviation. Structural results were statistically analyzed. The proposed method proved to be efficient and a good alternative to the molecular docking problem.
|
169 |
Análise inversa de estruturas com utilização de algoritmos genéticos. / Inverse analysis of structures with genetic algorithm management.Francisco Augusto Pereira Leite 30 November 2006 (has links)
O Homem tem desde o passado, tentado controlar a natureza. Um dos meios utilizados para isto, é sua observação do mundo. Através desta observação, tenta entender os fenômenos da natureza para fazer teorias e modelos. Charles Darwin, em seu trabalho Teoria da Evolução das Espécies, nos dá informações para o conhecimento de uma das mais importantes leis da natureza : sobrevive para a próxima geração o individuo mais forte. O Algoritmo Genético, pesquisado neste trabalho, é o exemplo disso. John Holland fez um Algoritmo Genético baseado na teoria de Darwin, que procura pelas melhores soluções para resolver um problema específico. Nada mais do que a simulação da teoria de Darwin. Nós pretendemos neste trabalho, estudar o Algoritmo Genético de Holland e através dele, analisar uma estrutura para encontrar seus parâmetros elásticos. / The men has since the past, tryed to control the nature. One of the way utilized for this, is his observation of the world. Through his observation, tries to understand the nature\'s fenomena, to making theories and models. Charles Darwin, in his work Theories of Species Evolution, gives us informations for the knowledges of one of the most important nature\'s laws: survives to the next generation the strongest individual . The Genetic Algorithm, the search in this work, is the example of this. John Holland, did a Genetic Algorithm. based in Darwin\'s Theories, that looks for the best solutions to solve a specific problem. Nothing else, of the simulation of the Darwin\'s theories . We intend in this work, to study the Holland\'s Genetic Algorithms and through it, to analyses a structure for find its elastic parameters.
|
170 |
Využitie genetických algoritmov pri tvorbe rozhodovacích stromov / Applying genetic algorithms for decision trees inductionŠurín, Lukáš January 2015 (has links)
Decision trees are recognized and widely used technique for processing and analyzing data. These trees are designed with typical and generally known inductive techniques (such as ID3, C4.5, C5.0, CART, CHAID, MARS). Predictive power of created trees is not always perfect and they often provide a room for improvement. Induction of trees with difficult criterias is hard and sometime impossible. In this paper we will deal with decision trees, namely their creation. We use the mentioned room for improvement by metaheuristic, genetic algorithms, which is used in all types of optimalization. The work also includes an implementation of a new proposed algorithm in the form of plug-in into Weka environment. A comparison of the proposed method for induction of decision trees with known algorithm C4.5 is an integral part of this thesis. Powered by TCPDF (www.tcpdf.org)
|
Page generated in 0.0641 seconds