Spelling suggestions: "subject:"1genetic markers -- 3research"" "subject:"1genetic markers -- 1research""
1 |
Evaluation of the IrisPlex DNA-based eye color prediction tool in the United StatesDembinski, Gina M. 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / DNA phenotyping is a rapidly developing area of research in forensic biology. Externally visible characteristics (EVCs) can be determined based on genotype data, specifically from single nucleotide polymorphisms (SNPs). These SNPs are chosen based on their association with genes related to the phenotypic expression of interest, with known examples in eye, hair, and skin color traits. DNA phenotyping has forensic importance when unknown biological samples at a crime scene do not result in a criminal database hit; a phenotype profile of the sample can therefore be used to develop investigational leads. IrisPlex, an eye color prediction assay, has previously shown high prediction rates for blue and brown eye color in a European population. The objective of this work was to evaluate its utility in a North American population. We evaluated the six SNPs included in the IrisPlex assay in an admixed population sample collected from a U.S.A. college campus. We used a quantitative method of eye color classification based on (RGB) color components of digital photographs of the eye taken from each study volunteer and placed in one of three eye color categories: brown, intermediate, and blue. Objective color classification was shown to correlate with basic human visual determination making it a feasible option for use in future prediction assay development. In the original IrisPlex study with the Dutch samples, they correct prediction rates achieved were 91.6% for blue eye color and 87.5% for brown eye color. No intermediate eyes were tested. Using these samples and various models, the maximum prediction accuracies of the IrisPlex system achieved was 93% and 33% correct brown and blue eye color predictions, respectively, and 11% for intermediate eye colors. The differences in prediction accuracies is attributed to the genetic differences in allele frequencies within the sample populations tested. Future developments should include incorporation of additional informative SNPs, specifically related to the intermediate eye color, and we recommend the use of a Bayesian approach as a prediction model as likelihood ratios can be determined for reporting purposes.
|
2 |
Potential role of histone deacetylases in the development of the chick and murine retinaSaha, Ankita 04 September 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The epigenetic state of any cell is, in part, regulated by the interaction of DNA with nuclear histones. Histone tails can be modified in a number of ways that impact on the availability of DNA to interact with transcriptional complexes, including methylation, acetylation, phosphorylation, ubiquituination, and sumoylation. Histones are acetylated by a large family of enzymes, histone acetyl transferases (HATs), and deacetylated by the histone deacetylases (HDACs). Acetylated histones are generally considered markers of genomic regions that are actively being transcribed, whereas deacetylated and methylated histones are generally markers of regions that are inactive.
The goal of the present study was to 1) study the epigenetic state with regard to the presence of euchromatin and heterochromatin in the developing chick and murine retina, 2) study and compare the localization patterns of the classical HDACs in the developing chick and murine retina with respect retinal progenitors and early differentiated cell types 3) to test the hypothesis that overall HDAC activity is required for dividing retinal progenitors to leave the cell cycle and
differentiate. Our results showed that the classical HDACs were ubiquitously expressed in the developing chick and murine retinas. Species specific differences as well as stage dependent variations were observed in the localization of the HDACs in the cell types that were studied in the chick and murine retina. Our preliminary results also showed that HDAC inhibition may lead to the inability of the cell types to leave the cell cycle and a subsequent increase in the number of progenitor cells present in the developing chick retina.
|
Page generated in 0.0657 seconds