Spelling suggestions: "subject:"desquite"" "subject:"déduite""
1 |
Geotekniska sättningsberäkningar på lera : Jämförelse av modeller i datorprogramFryksten, Jonas January 2016 (has links)
Geotechnical design is important to ensure good stability and bearing capacity of the ground. A part of this is to make good forecasts of future settlements. Nowadays most calculations are made in computer programs, such as Novapoint Geosuite Settlement. Geosuite Settlement includes a variety of calculation models, where some of the models include an addition of creep behaviour. The main purpose of this diploma work is to compare the results from different geotechnical settlement calculation models in Geosuite Settlement. As a reference object, an undrained test bank on clay in Lilla Mellösa outside of the community Upplands Väsby was selected. On this test site, the Swedish Geotechnical Institute (SGI) has performed measurements of long-term settlements since 1947. The result of this diploma work shows that the calculation models containing creep give result more like the measured settlements, than the calculation models that do not include creep. Despite of this, the measured settlement is greater than the settlement in calculation models containing creep. The most remarkable in this work are high excess pore pressures when using models containing creep. These excess pore pressure, in the result of this work, also decreases very slowly in time. One conclusion of this diploma work, based on the obtained results of this study, in comparison with other studies, is to use a calculation model containing creep, if the conditions are similar to those at the test site Lilla Mellösa.
|
2 |
Jämförelse av beräkningsprogrammen Novapoint Geosuite Stability och Geoslope SLOPE/W med avseende på släntstabilitet / Comparison of the Calculation Programs Novapoint Geosuite Stability and Geoslope SLOPE/W with Regards to Slope StabilityHagerfors, Jonas January 2019 (has links)
This thesis deals with the difference between two calculation programs for slope stability, namely Geoslope SLOPE/W and Novapoint GeoSuite Stability. The purpose of the thesis is to compare the two calculation programs with regard to the analysis of slope stability, as well as the two programs' handling of data. The two calculation programs use different Limit equilibrium methods to calculate safety factor and sliding surfaces for slopes. It can be expected that the result should be similar to one another, as well as the fact that both the calculation programs use different Limit equilibrium methods, but also when large differences in both safety factor and critical sliding surface give unreliable results. The thesis will also address the factors that may lie behind the fact that a possible stability failure should take place in a slope, as it gives an increased understanding of the analyzes that have been done. The work was carried out by modeling slopes with identical geometric relationships and identical material properties in the two calculation programs, a safety factor and a critical sliding surface for the slopes were developed for both programs and then compared with each other. / Föreliggande examensarbete behandlar skillnaden mellan två beräkningsprogram när det kommer till släntstabilitet, nämligen Geoslope SLOPE/W och Novapoint GeoSuite Stability. Syftet med examensarbetet är att jämföra de båda beräkningsprogrammen avseende vid undersökning av släntstabilitet, samt de två programmens hantering av data. De två beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder för att beräkna säkerhetsfaktor samt glidytor för slänter. Man kan förvänta sig att resultatet bör vara varandra likt då dels att de både beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder, men också då stora skillnader i både säkerhetsfaktor och kritisk glidyta ger opålitligt resultat. Examensarbetet kommer även ta upp de faktorer som kan ligga bakom att ett eventuellt brott ska ske i en slänt, då det ger ökad förståelse för de analyser som gjorts. Arbetet utfördes genom att slänter med identiska geometriska relationer samt identiska materialegenskaper modellerades i de båda beräkningsprogrammen, en säkerhetsfaktor samt kritisk glidyta för slänterna togs fram för båda programmen och jämfördes sedan med varandra.
|
3 |
Modelling of a compensated foundation in GeoSuite Settlement / Modellering av en kompensationsgrundläggning i GeoSuite SättningHermansson, Linnea, Söderberg, Rebecka January 2020 (has links)
The world today is constantly growing, creating a need of new roads and residential areas. New constructions lead to an increased load onto the soil, which can result in deformations when the soil layers underneath are compressed. To reduce the increased load on the soil, a compensated foundation can be used. This method is based on the principle that the load from the construction will be compensated by the excavated soil, often replaced by a lightweight material. As an example, this method can be used in areas with great clay layers and in sensitive projects where the rise of deformations can have undesirable consequences. It is of great importance to be able to understand the impact this method has on the soil and what long-term deformations that can be expected.GeoSuite Settlement is a tool for calculation of settlements and is frequently used in the Nordic industry of geotechnical engineering. In this study, the possibilities of modelling a compensated foundation in the software has been examined. Additionally, an analysis of parameters has been conducted in the aim of evaluating the importance of the parameters in the modelling process and the final results. Three different projects have been used as a basis, where one of them is a made-up case, based on the test site of Lilla Mellösa, and two actual cases designed by Structor Geoteknik Stockholm AB. Only one of these two projects have been completed, enabling post-construction measuring to be able to compare the calculated deformations with measured data, just about 16 months post-construction.Mainly three different approaches to the modelling of a compensated foundation has been studied in this work; unloading and loading, only loading corresponding to the total increase of load and with an edited soil profile adapted for a lightweight material (the description of the methods are to be found in Appendix 11.7). Similar patterns of deformations have been found in the results for the three methods, aside from one case where a slightly larger deformation occurred as a result of the lightweight material getting in contact with the underlying clay (instead of the filling/ dry crust). Based on this work, the simplest method is suggested to be used, i.e. only loading corresponding to the increased load.Due to the time limitations of this work, a decision to only study a few parameters in the analysis has been made and also to study them individually. Since the compressibility and creep characteristics of the clay is strongly dependent on the actual and former situation of the stress, the results of this parameter study are not directly applicable to any other case. However, this study clearly shows the importance of carefully evaluating the parameters of the clay, especially the preconsolidation pressure σ’c and the compressibility modulus M, which are important to obtain lifelike results. The importance of evaluating the time resistance value rS with respect to the current addition of stress has also been shown in this study. As expected, the groundwater level also plays an important role for the final settlements in the clay. / Vi lever i en värld som ständigt växer och detta skapar ett behov av nya vägar och bostadsområden. Nya konstruktioner som leder till en ökad belastning på jorden, kan ge upphov till sättningar när underliggande jordlager komprimeras. För att reducera belastningen på jorden kan en kompensationsgrundläggning användas, vilken bygger på principen att lasten från konstruktionen kompenseras av bortschaktad jord som ofta ersätts av ett lättfyllnadsmaterial. Metoden kan till exempel tillämpas i områden med mäktiga lerlager samt i känsliga projekt där uppkomsten av sättningar kan få stora konsekvenser. För att kunna dimensionera dessa är det av stor vikt att förstå dess påverkan på jorden och vilka långsiktiga sättningar som kan väntas uppkomma till följd av den nya konstruktionen.GeoSuite Sättning är ett beräkningsverktyg för sättningsberäkningar som idag används flitigt inom geoteknikbranschen. I detta arbete har möjligheterna att modellera en kompensationsgrundläggning med hjälp av programvaran studerats. Dessutom har en parameterstudie genomförts i syfte att undersöka vilka parametrar som är av stor betydelse för modelleringen och dess resultat. Som grund har tre projekt använts, varav ett är ett påhittat fall där jordprofilen baserats på den i testområdet Lilla Mellösa, och två är verkliga projekt tillhörande Structor Geoteknik Stockholm AB. I ett av dessa projekt har även beräknade deformationer jämförts mot uppmätta deformationer, cirka 16 månader efter konstruktion.Denna studie har främst studerat tre tillvägagångssätt för modellering av en kompensationsgrundläggning; av- och pålast, endast pålast motsvarande total lastökning samt av- och pålast med en redigerad jordprofil som anpassats till lättfyllnadsmaterialet (metoderna beskrivs i Bilaga 11.7). Resultaten har visat på ett snarlikt sättningsförlopp för de tre metoderna, bortsett från ett fall där en något större sättning uppkom till följd av att lättfyllningen i jordprofilen kom i kontakt med underliggande lera (istället för fyllning/ torrskorpelera). Utifrån detta arbete rekommenderas därmed att använda den enklaste metoden med endast pålast.På grund av arbetets tidsbegränsning har endast ett antal parametrar inkluderats i parameterstudien, dessutom har de främst utvärderats separat. Vilka parametrar för jordens kompressions- och krypegenskaper som har störst påverkan på resultatet är starkt beroende av spänningssituationen i det aktuella fallet och resultaten från detta arbete är därmed inte direkt applicerbart på andra projekt. Tydligt är dock att en noggrann utvärdering av jordens parametrar som dess förkonsolideringstryck σ’c samt kompressionsmodul M är väsentligt för att erhålla verklighetstrogna resultat. Studien har även visat på vikten av att utvärdera lerors kryptal rS med hänsyn till den aktuella tillskottsspänningen. Även grundvattennivån har visat sig ha en betydlig påverkan på uppkomsten av sättningar.
|
4 |
Building 3D models from geotechnical dataAzaronak, Natallia January 2015 (has links)
Building Information Modelling (BIM) and Virtual Reality (VR) are two of the main directions in the BIM-strategy of the Swedish Transport Administration. Starting from the year 2015 it is a requirement to use BIM even in tenders. In order to meet these requirements WSP developed their own product Open VR - a data platform for visualization, communication, planning, designing as well as a tool for documentation of new and existing environments. Geotechnical analysis is an important part in most of the projects and affects the economy, the projects timeframes and further projects design greatly. Availability of good quality basic data is a requirement to succeed in a project. Inaccurate and late delivered rock and soil 3D models cause the problems at the design stage. A completely or partially automated process for creating 3D soil models using geotechnical database and models presentation in Open VR would provide both economic benefits and reduce the amount of repetitive work in the CAD environment. One of the biggest issues is to combine data coming from different sources and therefore clear standards on how different fields of technology should prepare their information are needed. The goal of this master thesis is to develop a guideline how to prepare geotechnical objects for Open-VR. Firstly software that could be used for preparing geotechnical data for Open VR were identified and described. Three products were chosen: NovaPoint, Civil3D, Power Civil. After that data were processed using the software chosen for comparison. Geotechnical objects (3D models of soil layers and 3D boreholes) were prepared for Open VR using these three products. The results were evaluated. Finally a guideline for preparing geotechnical data for Open VR was written. This guideline can be used not only for preparing the geotechnical data for Open VR but for any other product which can be used for the model coordination (for example, NavisWorks etc). This guideline can be used in any geotechnical project where geotechnical data of Swedish standard are used. This guideline can be used as it is in order to create 3D models of soil layers and rock surfaces with help of Civil3D. In case that another kind of software should be used, this guideline can be used as a basis, because the workflow is the same, but some correction can be done concerning what “button should be pressed”. Recommendations were given depending on the project requirements and application area. Taking into account that WSP decided to not continue with NovaPoint and use Civil 3D and Power Civil instead, then it is recommended to use Civil 3D when it is necessary to create soil layers using field investigations. Results of 3D modelling can be used in NovaPoint, loaded to Open VR and, if necessary, even be imported into Power Civil. Power Civil can be used in large-scale projects where advanced 3D modelling is required or when all other area of technology use Power Civil for project design. Even though NovaPoint does not have priority at WSP it should not be out of the game, it can be very useful in projects where the usage of BIM is a requirement. Considering that NovaPoint has good communication with GeoSuite and can produce smart 3D models it is recommended to have a license of NovaPoint at WSP in order being able to follow software development.
|
Page generated in 0.031 seconds