• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 93
  • 27
  • 20
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 395
  • 121
  • 98
  • 92
  • 74
  • 65
  • 64
  • 45
  • 39
  • 32
  • 31
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

AGE OF THE WALDEN CREEK GROUP, WESTERN BLUE RIDGE PROVINCE: RESOLVING A DECADES-OLD CONTROVERSY VIA DETRITAL MINERAL GEOCHRONOLOGY AND SEDIMENTARY PROVENANCE ANALYSIS

Kelly, Evan A 01 January 2014 (has links)
Originally mapped as Precambrian and uppermost Ocoee Supergroup (OS), recent discoveries of Paleozoic microfossils have placed the Walden Creek Group (WCG), eastern Tennessee, into a younger depositional framework (Silurian or younger). In this study, monazite geochronology using SIMs, detrital zircon U-Pb geochronology determined by LA-ICP-MS, feldspar compositions determined by microprobe, zircon-tourmaline-rutile (ZTR) indices, and framework mineral modes were used to characterize provenance of sandstones of the WCG. Monazite ages cluster at 450 and 1050 Ma. All Ordovician ages are from grains that, in BSE images, have inclusion-rich microtextures interpreted as diagenetic and/or metamorphic, thus requiring that the WCG was deposited prior to Taconic metamorphism. The WCG heavy mineral suite is similar to the OS in its low modal abundance of monazite, but contains a slightly higher ZTR index. WCG Feldspar compositions are sodium poor-Kfs and sodic plagioclase, like the OS. Detrital zircon U-Pb ages for three formations of the WCG (seven samples total, n = 620) match the Ocoee signature. The dominant age modes are at ca. 1000 and 1150 Ma, with smaller modes at 1450 and 650 Ma. The monazite ages and supporting observations prove the WCG is not Paleozoic and its source rock signature matches the underlying OS.
112

Structural geology and geochronology of the Kluane schist, southwestern Yukon Territory

Stanley, Benjamin January 2012 (has links)
In light of the recent increase of mineral exploration in the northern Cordillera, private, educational, and governmental agencies have been compelled to revisit and research areas of the Cordillera whose geologic evolution still remains enigmatic. The current study is concerned with better understanding how a region of the boundary zone separating the peri-Laurentian realm from the exotic, Insular realm evolved following deposition of the meta-sedimentary Kluane schist in the Late Cretaceous. The schist is a northwest striking 30 km wide and 160 km long belt of highly deformed greenschist to amphibolite facies meta-sedimentary rocks located east of Kluane Lake, southwestern Yukon Territory. These deformed sediments as well as numerous other deformed Jurassic-Cretaceous meta-sedimentary units present along the same boundary zone (north and south of the schist) represent important rocks that can help constrain how this part of the Cordillera has evolved since the mid-Mesozoic. To better understand how the Kluane schist evolved, detailed field mapping, petrography, and U-Pb geochronological studies were undertaken in the area encompassing the schist. This data is integrated with pre-existing and recently collected geologic databases from the region to propose a model for the tectonic and structural evolution of the Kluane schist. Conclusions drawn from this study indicate the Kluane sediments were likely deposited into a closing Late Cretaceous seaway from sources derived from Yukon-Tanana terrane (YTT) to the east. The basin into which the sediments were deposited represents a remnant ocean basin that was present between Insular terrane and YTT prior their amalgamation in the Jurassic. Thrusting of YTT over the Kluane schist basin resulted in burial, metamorphism, and ductile deformation of the schist. Contemporaneously, the early stages of the Ruby Range batholith (RRB) were intruding the schist as well as the schist/YTT contact. This batholith intruded syn- to post-tectonically from approximately ca. 77 Ma to 65 Ma and it is responsible for imparting a kilometer scale inverted contact metamophic aureole onto the Kluane schist wherein metamorphic grade decreases to the southwest. Subsequently, a gneissic sub-unit of the Kluane ‘schist’ was formed by partial melting of the RRB/Kluane schist contact. During this composite deformation event, the schist was transported to mid-crustal depths by an oblique sinistral shear zone. Shortly thereafter, the schist was exhumed and deformed by consistent northeast-over-southwest shearing. Regional scale, broad open folding of the schist ensued and likely occurred by flexural slip along foliation planes with low cohesion. Two syn- to post- tectonic igneous phases associated with Hayden Lake intrusive suite have been dated to ca. 55 Ma. This timing likely correlates with broad, open folding and a ‘late’ syn- to post-kinematic thermal overprint of the schist. The combined results of this study indicate that deformation and metamorphism of the Kluane schist was a long-lived event, extending from ca. 82 Ma to ca. 55 Ma.
113

Structural and geochronological investigation of the southern Alexander terrane in the vicinity of Porcher Island, northwestern British Columbia

Angen, Joel James January 2013 (has links)
The Alexander terrane is an allochthonous terrane within the North American Cordillera. New structural mapping and geochronology within the southern Alexander terrane in the vicinity of Porcher Island provides evidence for two major tectonic events. The oldest is Late Silurian to Early Devonian magmatism and deformation assigned to the Klakas orogeny. The area has subsequently been affected by mid-Cretaceous conjugate shear zones potentially associated with tectonic escape. Northwest-striking sinistral shear zones characterize mid-Cretaceous deformation in the western Coast Belt south of Prince Rupert in north coastal British Columbia. Structurally focused mapping and geochronology has revealed a component of lateral extension to this deformation. General flow characteristics of the shear zones are identified by comparison of fabric patterns to published models for fabric development in shear zones. U-Pb ages from synkinematic dykes constrain motion on northwest-striking sinistral transpressional shear zones, including the Useless, Barrett and Salt Lagoon shear zones, to ca. 104 – 96 Ma, and dextral transpression on the north-striking Telegraph Passage shear zone to ca. 97.6 ± 0.2 Ma. The geometry, kinematics, and coeval nature of these shear zones suggests that they formed in part as a ductile conjugate set. The presence of similarly-oriented conjugate shear bands in the apex zone between sinistral and dextral shear zones further reinforces this interpretation. The orientation of these conjugate sets indicates a component of north-northwest east-southeast extension. The conjugate shear zones merge together into the Grenville Channel shear zone, a sinistral transpressional shear zone with high strike-parallel stretch. A U-Pb age of 103 ± 32 Ma from a synkinematic dyke in the Grenville Channel shear zone coincides with a previously published Lu-Hf age of 102.6 ± 3.7 Ma on synkinematic garnet. Overall, structural and geochronological data from Porcher Island and surrounding area in north coastal British Columbia indicate that mid-Cretaceous deformation was characterized by ENE-WSW (orogen normal) shortening and NNW-SSE (orogen parallel) extension. This local strain regime is consistent with large-scale mid-Cretaceous tectonic escape as proposed for the northern Cordillera at that time, expressed in coeval sinistral faulting in the Coast Belt and dextral faulting in the northern Omineca belt. The Late Silurian to Early Devonian Ogden Channel complex is a mafic to intermediate metaplutonic-metamorphic complex within the southern Alexander terrane on southern Porcher Island and adjacent Pitt Island in north coastal British Columbia. Lithological characteristics of the complex suggest that it represents the mid-crustal roots of a volcanic arc. An age of 413.3 ± 2.5 Ma from a comparatively weakly deformed quartz diorite dyke indicates that the synkinematic Ogden Channel complex is at least in part Early Devonian in age, corresponding to the Klakas orogeny that affected the Alexander terrane in southeast Alaska. Crosscutting relationships indicate that individual intrusions within the Ogden Channel complex were emplaced syn- to post-kinematically with respect to southwest-vergent sinistral reverse deformation (present coordinates). The structural and lithological characteristics of the Ogden Channel complex are consistent with the interpretation that this part of the Alexander terrane was located in the upper plate of a northeast-dipping subduction zone, which culminated in the Klakas orogeny.
114

The origin and evolution of North American kimberlites

Zurevinski, Shannon 11 1900 (has links)
Recent discoveries of kimberlites in North America have revealed that different processes are involved in the generation of kimberlite magma. A multi-disciplinary approach combining mineralogical, petrological, geochemical, and geochronological methods is used to classify the kimberlites, investigate possible sources of magma and evaluate current tectonic models proposed for the generation of kimberlite magma. The two main study areas are 1) the diamond-poor Churchill kimberlite field (Nunavut); and 2) the highly diamondiferous Lac de Gras kimberlite field (NWT). The Attawapiskat kimberlite field, the Kirkland Lake kimberlite field and the Timiskaming kimberlite field (Ontario) are also included in this study. The 55-56 Ma Diavik kimberlite cluster (NWT) have been classified as resedimented volcaniclastic > olivine-bearing volcaniclastic > mud-bearing volcaniclastic > macrocrystic oxide-bearing hypabyssal kimberlite > calcite oxide hypabyssal kimberlite > tuffisitic kimberlite breccia. Geochemical features of Diavik kimberlites include: 1) LREE enrichment, 2) large intra-field range in REE content, and 3) highly diamondiferous kimberlites at Diavik with primitive geochemical signatures. The Churchill kimberlites are classified as sparsely macrocrystic, oxide-rich calcite evolved hypabyssal kimberlite and macrocrystic oxide-rich monticellite phlogopite hypabyssal kimberlite. Electron microprobe analyses of olivine, phlogopite, spinel and perovskite support this petrographical classification. Twenty-seven precise U-Pb perovskite and Rb-Sr phlogopite emplacement ages indicate that magmatism spans ~45 million years (225-170 Ma). The crystallization ages and the Sr and Nd isotopic compositions of groundmass perovskite from a well-established, SE-trending Triassic-Jurassic corridor of kimberlite magmatism in Eastern North America (ENA) were determined to investigate the origin of this magmatism. The Sr isotopic results indicate that the Churchill (0.7032-0.7036) and Attawapiskat kimberlites (0.7049-0.7042) have unique isotopic compositions, while Kirkland Lake/Timiskaming perovskite have a larger range of 87Sr/86Sr ratios. This implies the derivation of kimberlite magma from two distinct sources in the mantle, a depleted MORB mantle source and a kimberlite magma with a Bulk Silicate Earth signature. The pattern of increasing 87Sr/86Srinitial with younging of kimberlite magmatism along the ~2000 km corridor of continuous Triassic/Jurassic magmatism could be explained from either a single or multiple hotspot track(s), responsible for the addition of heat required to generate small volume mantle melting of a kimberlite source.
115

Volcanic framework and geochemical evolution of the Archean Hope Bay Greenstone Belt, Nunavut, Canada

Shannon, Andrew J. 05 1900 (has links)
Part of the Slave Structural Province, the Hope Bay Greenstone Belt is a 82 km long north-striking sequence of supracrustal rocks dominated by mafic volcanic rocks with lesser felsic volcanic and sedimentary rocks. Mapping of two transects in the southern section and two transects in the northern section have contributed to a robust stratigraphic framework the belt. Three recently discovered Archean lode gold deposits in the Hope Bay Greenstone belt have associations with major structures and specific lithologies (Fe-Ti enriched basalts). The Flake Lake and the Clover Transects are in the southern part of the belt and the Wolverine and Doris-Discovery Transects are in the northern part of the belt. This work subdivides the volcanic rocks into distinct suites based upon field, petrologic, geochemical, and geochronologic criteria. Some of the suites are stratigraphically continuous and can be correlated tens of kilometres along strike thereby linking the two parts of the Hope Bay Greenstone Belt. U-Pb geochronology supports work by Hebel (1999) concluded that virtually all the supracrustal rocks in the Hope Bay Greenstone Belt were deposited over at least 53 m.y. (2716-2663 Ma), with the majority of the volcanism occurring after 2700 Ma. A number of basalt groups are identified and include the normal basalt, the LREE-enriched basalt, the Ti-enriched basalt and the Ti-enriched Al-depleted basalt groups. They have chemical signatures that vary in trace elements particularly HFSE and REE’s, and can be easily be distinguished by geochemical screening. The felsic volcanic suites are also divided into three main groups, tholeiitic rhyolite, calc-alkaline dacite and calc-alkaline rhyolite groups. Nd and Hf isotope signatures are consistent with trace element signatures in identifying mafic and felsic volcanic groups, with the tholeiitic rhyolite showing highly variable signature. The Hope Bay Greenstone Belt has been show to have a number of felsic and volcanic cycles. An early construction phase of the belt is made up of primarily mafic volcanics which is followed by felsic volcanism equalled mafic volcanism which lacks basalts enriched in Ti. The geodynamic environment that created the Hope Bay Greenstone Belt can be explained by plume influenced subduction zone.
116

A genetic model for epithermal gold-base metal mineralisation, Soreang, West Java, Indonesia

Tampubolon, A. Unknown Date (has links)
No description available.
117

Provenance Analysis of the Sperm Bluff Formation, southern Victoria Land, Antarctica

Savage, Jeni Ellen January 2005 (has links)
Beacon Supergroup rocks of probable Devonian age, containing conglomerate clasts of lithologies unknown in outcrop in southern Victoria Land (SVL) occur in the St Johns Range to Bull Pass Region, SVL, Antarctica. The Lower Taylor Group sedimentary rocks, herein called the Sperm Bluff Formation, unconformably rest on the regionally extensive Kukri Erosion Surface that truncates local basement. The basement complex includes three Plutonic Suites, Dry Valley (DV) 1a, DVIb and DV2 of the Granite Harbour Intrusives that intrude metasedimentary rocks of the Koettlitz Group. Allibone et al. (1993b) suggested a SVL terrane accretion event may have occurred about the same time as accretion of a terrane known as the Bowers terrane in northern Victoria Land (NVL) based on changing chemistry of the CambroOrdovician granitoids. Further, it is suggested that conglomerate clasts of the Sperm Bluff Formation may have been derived from this postulated terrane (Allibone et al., 1993b; and Turnbull et al., 1994). Following extensive fieldwork provenance studies and basin analysis of the sedimentary Sperm Bluff Formation are used here to test these ideas. The Sperm Bluff Conglomerate of Turnbull et al. (1994) is re-interpreted as the Sperm Bluff Formation and described using a lithofacies-based approach. The Sperm Bluff Formation is divided into six lithofacies including 1) Conglomerate Lithofacies; 2) Pebbly Sandstone Lithofacies; 3) Crossbedded Sandstone Lithofacies; 4) Parallelbedded Lithofacies; 5) Low-angle Crossbedded Lithofacies; and 6) Interbedded Siltstone/Sandstone Lithofacies. The intimate field association of the Conglomerate, Pebbly Sandstone and Crossbedded Sandstone Lithofacies ties them to the Conglomerate Lithofacies Association whereas the other three units are independent. The Conglomerate Lithofacies Association is interpreted to represent a wavedominated deltaic environment, based on the presence of broad channels, pervasive crossbedding, paleocurrent and trace fossil data. Both Parallel-bedded and Low-angle Crossbedded Sandstone Lithofacies are interpreted as a foreshore-shore face shallow marine setting on the basis of low-angle crossbeds and trace fossil assemblages. The Interbedded Siltstone and Sandstone Lithofacies is interpreted as an estuarine environment based on alternating siltstone/sandstone beds and the presence of flaser and lenticular bedding, small crossbedded dune sets, mud drapes, syneresis cracks and diverse paleocurrent directions. An estuarine setting is tentatively favoured over a lagoonal setting due to the presence of syneresis cracks small channels and the proximity to a river delta. I suggest that the Sperm Bluff Formation is likely a lateral correlative of the Altar Mt Formation of the Middle Taylor Group, in particular the Odin Arkose Member. This interpretation is based on arkosic nature of the sedimentary rocks, regional paleocurrent patterns, the presence of salmon pink grits at Gargoyle Turrets and trace fossil assemblages. The upper most lithofacies at Mt Suess, the Low-angle Crossbedded Sandstone Lithofacies that only occurs at this site is- suggested as a lateral correlative to the Arena Sandstone, which stratigraphically overlies the Altar Mt Formation, based on quartzose composition, clay matrix, stratigraphic position and trace fossils present. Provenance analysis was carried out on sedimentary rocks and conglomerate clasts using clasts counts of conglomerates, petrographic analysis of clasts, point counts of sandstones and clasts, geochemistry and V-Pb detrital zircon analysis. Conglomerate clasts lithologies include dominantly silicic igneous clasts and finely crystalline quartzite clast amongst other subordinate lithologies such as vein quartz, schist, schorl rock, gneiss and sandstone. Despite past identification of granitoid clasts in the Sperm Bluff Formation (Turnbull et al., 1994), none were found. Rhyolitic clasts of the Sperm Bluff Formation have compositions typical of highly evolved subduction related rocks, although they have undergone post-emplacement silicification. Wysoczanski et al. (2003) date rhyolite and tuff clasts between 497±17 Ma and 492±8 Ma, placing them within error of all three Dry Valley Magmatic Suites and removing the likelihood of correlation to NVL volcanic rocks. Petrographic analysis suggests they are components of a silicic magmatic complex. Chemically the volcanic clasts appear to represent a single magmatic suite (Sperm Bluff Clast Suite), and are clearly related to the Dry Valley Plutonic Suites. Although clasts are not constrained beyond doubt to one Suite, DV2 is the best match. Quartzite clasts of the Sperm Bluff Formation are too pure and old to be derived from a local source. Detrital zircon V-Pb ages for the quartzite suggest zircons were derived from the East Antarctic Craton, and that the quartzite source rocks were deposited prior to the Ross-Delamarian Orogeny. Quartzite with a similar age signature has not been identified; however, the Junction Formation sandstone of northwest Nelson has a similar age spectrum. Sandstones from the Sperm Bluff Formation indicate derivation from a felsic continental block provenance, which contain elements of volcanic, hyperbyssal and plutonic rocks. They are arkosic to quartzose in composition and conspicuously lack plagioclase. Detrital zircon analyses give a strong 500 Ma peak in all 3 samples, characteristic of a Ross-Delamarian Orogen source, with few other peaks. The dominance of a single peak is highly suggestive oflocal derivation. The sedimentary rocks of the Sperm Bluff Formation are interpreted to be derived predominantly from the basement rocks they now overlie. The presence of the regionally extensive Kukri Erosion Surface at the lower contact of the Beacon Supergroup rocks implies an intermediate source must have existed. This most likely contained all components of the formation. I suggest that the DV2 Suite was emplaced in a subsiding, extensional intra-arc setting. Erosion of the uplifted arc region probably occurred from Late Ordovician to Silurian times with deposition of sediments in a subsiding intra-arc basin. Erosion of the rhyolitic complex in this region probably occurred, however, it is likely that some was preserved. Inversion of this basin prior to the Devonian probably provided the means for these sediments to be deposited as the Sperm Bluff Fonnation.
118

Constraining the rates and timescales of garnet growth and associated dehydration during metamorphism

Dragovic, Besim 04 March 2016 (has links)
This study incorporates high precision zoned garnet samarium-neodymium geochronology and thermodynamic analysis of garnet forming dehydration reactions to determine the amount of water release during both subduction and mountain building. Garnet grows during rock dehydration, providing both a temporal and geodynamic record of not only its growth, but of associated dehydration. Laboratory experiments and geodynamic models have been used to predict amounts of dehydration during metamorphism based on equilibrium assumptions. If equilibrium is not maintained, or if aspects of the geodynamic modeling are incorrect, these model-based predictions will prove inaccurate. Field-based evidence is necessary to test such model predictions and to elucidate both the timing and duration of dehydration and the role of kinetics during metamorphism. Localities that have undergone dehydration and associated fluid flow provide natural laboratories in which to study these geologic processes. This study focuses on two geologic settings: regional orogenesis (Townshend Dam, Vermont) and subduction zone metamorphism (Sifnos, Greece). Regional metamorphism of the pelitic schists of Townshend Dam occurred during the Acadian orogeny peaking at ~381 Ma. Garnet growth lasted for 4.2 ± 2.4 million years. Thermodynamic forward modeling from this study has shown that an early stage of burial of the rocks without significant heating first occurred, followed then by a period of intense heating at depth, during which, roughly 2 vol.% water was lost from the rock. In contrast, metamorphism, and thus dehydration, during subduction of a continental margin in Sifnos, Greece was found to have occurred in as brief a timespan as tens to hundreds of thousands of years, releasing 2-3 vol.% water during a period of intense heating at ~75 km depth between ~47-44 million years ago. This short time interval represents a discrete pulse of dehydration and heating within the context of the process of subduction, which probably occurred over timescales of 10 to 20 million years in this location. This is the first study to provide a field-based constraint on the magnitude, timing, and rate of dehydration during subduction, a process that causes intermediate-depth earthquakes, mantle melting and volcanism, and large scale changes to the global water cycle.
119

Exploring the history of India-Eurasia collision and subsequent deformation in the Indus Basin, NW Indian Himalaya

January 2011 (has links)
abstract: Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of the issue has been hampered by poor accessibility, paucity of robust depositional age constraints, and disputed provenance of many units in the succession. To achieve a better understanding of the stratigraphy of the Indus Basin, multispectral remote sensing image analysis resulted in a new geologic map that is consistent with field observations and previously published datasets, but suggests a substantial revision and simplification of the commonly assumed stratigraphic architecture of the basin. This stratigraphic framework guided a series of new provenance studies, wherein detrital U-Pb geochronology, 40Ar/39Ar and (U-Th)/He thermochronology, and trace-element geochemistry not only discount the hypothesis that collision began in the Early Oligocene, but also demonstrate that both Indian and Eurasian detritus arrived in the basin prior to deposition of the last marine limestone, constraining the age of collision to older than Early Eocene. Detrital (U-Th)/He thermochronology further elucidates the thermal history of the basin. Thus, we constrain backthrusting, thought to be an important mechanism by which Miocene convergence was accommodated, to between 11-7 Ma. Finally, an unprecedented conventional (U-Th)/He thermochronologic dataset was generated from a modern river sand to assess steady state assumptions of the source region. Using these data, the question of the minimum number of dates required for robust interpretation was critically evaluated. The application of a newly developed (U-Th)/He UV-laser-microprobe thermochronologic technique confirmed the results of the conventional dataset. This technique improves the practical utility of detrital mineral (U-Th)/He thermochronology, and will facilitate future studies of this type. / Dissertation/Thesis / Ph.D. Geological Sciences 2011
120

Caracterização metamórfica das rochas granulíticas de Chorozinho-CE / Caracterization metamorfic of granulite rocks in Chorozinho-CE

Soares, Wollker Cunha January 2016 (has links)
SOARES, Wollker Cunha. Caracterização metamórfica das rochas granulíticas de Chorozinho-CE. 2016. 114 f. Dissertação (Mestrado em geologia)- Universidade Federal do Ceará, Fortaleza-CE, 2016. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-06-07T18:25:11Z No. of bitstreams: 1 2016_dis_wcsoares.pdf: 8066377 bytes, checksum: c7104d72f669382e3c9a055e1c933ce8 (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-07-21T19:53:14Z (GMT) No. of bitstreams: 1 2016_dis_wcsoares.pdf: 8066377 bytes, checksum: c7104d72f669382e3c9a055e1c933ce8 (MD5) / Made available in DSpace on 2016-07-21T19:53:14Z (GMT). No. of bitstreams: 1 2016_dis_wcsoares.pdf: 8066377 bytes, checksum: c7104d72f669382e3c9a055e1c933ce8 (MD5) Previous issue date: 2016 / The metamorphic evolution of granulite terrains are an intense research mark in the last few decades since, mostly, represent inferior and middle continental crust segments. Thereby, Chorozinho’s region (Ceará’s northeast) exhibits an granulite rock sequence which doesn’t have age determination and regional metamorphism studies, preventing a better understanding of an important region for the Ceará state geological contex. The main objective of this work is to find the protolith age and also determine pressure and temperature conditions for the major outcropping geological units representative lithotypes. The methodology applied in this work followed four differentiated stages, being bibliographical survey, field campaign, laboratorial stage, where the samples went through petrographic, geochronological (SHRIMP) and mineral chemistry (ICP-MS) analysis, and office stage. Chorozinho’s region possess three lithotypes: enderbitc gneiss, sillimanite-garnet-gneiss (diatexite) and biotite-gneiss. The first is an orthoderived rock and presents these identified minerals in thin section: plagioclase, K-feldspar, quartz, clino and orthopyroxene, hornblend, biotite ± garnet ± sphene ± zircon ± apatite ± opaque, in granoblastic texture, while the other two are paraderived. Sillimanite-garnet-gneiss (diatextite) have K-feldspar, quartz, plagioclase, sillimanite, biotite ± opaque ± garnet ± apatite ± zircon, as the biotite-gneiss have plagioclase, K-feldspar, quartz, biotite ± zircon ± apatite ± opaque, may have or not garnet, and both retain granolepidoblastic texture. The mineral chemistry shows that the garnet composition is mainly almandine, orthopyroxene is enstatite, clinopyroxene are augite and diopside, plagioclase proved to have an oligoclase-andesine composition (high metamorphic grade feature) and alkaline feldspar with sanidine composition. Biotite shown a flogopite/eastonite, rich FeO and TiO2, tendency. Relative to the region metamorphic conditions, the softwares, TWEEQU and THERMOCALC, revealed temperature between 700°C-790°C and pressure among 4-11,6 kbar, for the enderbitc gneiss. And so, U-Pb isotopic data, in zircon, aiming to define the protolith age, provided the expected information because the proximity with others ages, around 2,1-2,0 Ga. / A evolução metamórfica em terrenos granulíticos tem sido alvo de intensa pesquisa nas últimas décadas visto que tais terrenos, em sua grande maioria, representam segmentos da crosta continental inferior e média. Assim, a região de Chorozinho (Nordeste do Ceará), exibe uma sequência de rochas granulíticas, a qual, não dispõe de estudos envolvendo a determinação de idades do metamorfismo da região, impedidno assim um melhor entendimento desta região tão importante para o contexto geológico do estado do Ceará. O objetivo do trabalho é encontrar a idade do protólito do enderbito, além de determinar condições de pressão e temperatura dos litotipos representativos das principais unidades aflorantes. A metodologia empregada no desenvolvimento deste trabalho obedeceu quatro etapas diferenciadas, levantamento bibliográfico, etapa de campo, etapa laboratorial, onde as amostras passaram por estudo petrográfico, geocronológico (SHRIMP) e de química mineral por microssonda eletrônica e a etapa de gabinete. A região de Chorozinho possui três litotipos: gnaisse enderbitico, silimanita-granada-gnaisse (diatexito) e biotita-gnaisse. Destas o primeiro é uma rocha ortoderivada, e apresenta os seguintes minerais identificados em lâmina: Plagioclásio, K-feldspato, Quartzo, Clino e Orto piroxênio, Hornblenda, Biotita, ± Granada, ± Titanita, ± Zircão, ± apatita, ± opacos e possuem textura granoblástica, enquanto os dois últimos são considerados paraderivados. Sillimanita granada – gnaisse (diatexito) apresentando K-feldspato, Quartzo, Plagioclásio, Sillimanita, Biotita, ± Opacos ± Granada, ± apatita, ± Zircão, e o biotita gnaisse com Plagioclásio, K-feldspato, Quartzo, Biotita, ± Zircão ± apatita, ± opacos, este podendo ou não ter granada, ambos possuem textura granolepidoblástica. A química mineral mostra que a composição da granada é predominantemente almandina, ortopiroxênio são enstatita e os clinopiroxênios augita e diopsídio, os plagioclásios demonstraram uma composição oligoclásio-andesina (característica de alto grau metamórfico) e os feldspatos alcalino possuem composição sanidina. As biotitas revelaram uma tendência a flogopita e eastonita ricas em FeO e TiO2. Com relação ao metamorfismo da região, os softwares, TWEEQU e THERMOCALC, revelaram temperatura, em torno de 700 ºC e 790 ºC, e pressão entre 4 e 11,6 kbar, para o gnaisse enderbitico. Por fim, Os dados isotópicos de U-Pb, em zircões, objetivando a idade do protólito, forneceram dados esperados devido à proximidade com a idade já existentes, em torno de 2.1 e 2.0 Ga.

Page generated in 0.0603 seconds