Spelling suggestions: "subject:"geodésia (matemática)"" "subject:"geodésia (latemática)""
1 |
Cosmologia e o principio de Maupertuis-Jacobi / Cosmology and the Maupertuis-Jacobi principleElias, Luciana Aparecida 14 March 2008 (has links)
Orientador: Alberto Vazquez Saa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-24T19:33:36Z (GMT). No. of bitstreams: 1
Elias_LucianaAparecida_D.pdf: 944370 bytes, checksum: 7dbca4d7a5a1d3081145a59e14a05b42 (MD5)
Previous issue date: 2008 / Resumo: Mostraremos que as equações de movimento de uma classe de modelos cosmológicos anisotrópicos envolvendo campos escalares com acoplamento não mínimo à gravitação são equivalentes ao fluxo geodésico em certas variedades estendidas munidas de uma métrica não-riemanniana, generalizando alguns trabalhos recentes e permitindo uma melhor classificação dinâmica do espaço de fase das soluções destes modelos cosmológicos. Essencialmente, as técnicas empregadas neste trabalho são uma generalização do conhecido Princípio de Maupertuis-Jacobi da Mecânica Clássica, o qual permite associar o fluxo geodésico de uma métrica particular (a métrica de Jacobi) às equações de movimento de um dado sistema mecânico, tipicamep.te Hamiltoniano. Mostraremos também que a abordagem geométrica baseada na métrica de Eisenhart da mecânica clássica pode ser generalizada de maneira análoga ao do Princípio de Maupertuis-Jacobi para o caso de equações cosmológicas, permitindo a introdução de um outro enfoque geométrico complementar àquele correspondente à generalização' do Princípio de Maupertuis-Jacobi. Estes resultados são aplicados a modelos cosmológicos de quintessência atuais e resultados interessantes e promissores são obtidos / Abstract: We will show that the equations of motion for a class of non-minimally coupled anisotropic scalar-tensorial cosmological models are equivalent to the geodesic fux on certain augmented manifold endowed with a non-Riemannian metric. This result generalizes some recent ones and provides a better dynamical classification of the phase space of such cosmological models. The
techniques employed in this work are, basically, a generalization of the well known Maupertuis- Jacobi Principle of Classical Mechanics, which allows us to associate the geodesic flux of a particular metric (the so called Jacobi Metric) to the equations of motion of a given mechanical system, typically a Hamiltonian one. We will show also that the classical geometrical approach based on the Eisenhart metric can be generalized in an analogous way for the cosmological case, leading to another complementary geometrical approach to that one corresponding to the generalization of the Maupertuis-Jacobi Principle. Such results are applied to certain quintessential cosmological models leading to some interesting and promising results / Doutorado / Fisica-Matematica / Doutor em Matemática Aplicada
|
2 |
Trajetorias sobre o globo terrestre : um estudo da geometria da esfera nos mapas cartograficos / Trajectories on the earth's surfaces : a study of the geometry of the sphere in cartographical mapsCamargo, Vera Lúcia Vieira de 13 August 2018 (has links)
Orientadores: João Eloir Strapasson, Sueli Irene Rodrigues Costa / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T03:00:08Z (GMT). No. of bitstreams: 1
Camargo_VeraLuciaVieirade_M.pdf: 3294821 bytes, checksum: a6e30526a91f94e62d0ea5007ae4b98d (MD5)
Previous issue date: 2009 / Resumo: Este trabalho buscou explorar os conceitos e propriedades da geometria da esfera no espaço usual e as projeções cartográficas cilíndricas, em especial, a de Mercator e a eqüidistante meridiana. Dentre os vários conceitos e aspectos históricos abordados no trabalho, destacamos o estudo comparativo entre duas maneiras de caminhar sobre o globo terrestre, uma pela geodésica (curva de menor distância entre dois pontos) e a outra pela loxodromia (curva que mantém o ângulo constante com os meridianos e que teve grande importância nas navegações marítimas e aéreas). Discutimos as deformações que ocorrem nas projeções do globo no plano, o que nos possibilitou estabelecer um comparativo entre o trajeto loxodrômico, que se projeta no mapa de Mercator como uma reta com a curva geodésica entre dois pontos. As representações das projeções apresentadas no trabalho foram implementadas num programa computacional de cálculo simbólico e de visualização. O texto contempla várias possibilidades de abordagem para os cursos de graduação em Matemática e áreas afins, em particular, nas disciplinas de Geometria Analítica e Cálculo, pois estabelece uma conexão entre a Geometria e a Geografia por meio de um instigante exemplo de como a Matemática pode ajudar na compreensão do espaço em que vivemos. / Abstract: Concepts and properties of the sphere geometry are explored here in connection with cylindrical cartographic projections, specially the Mercator and the equidistant meridian projections. The approach include some of the historical aspects of the development of maps and the focus is on the comparison between two paths connecting two different locations on the Earth: the geodesic (shortest path) and the loxodrome which meets any meridian at constant angle and has been so important for navigation. We discuss the projection distortions from the globe to the plane maps. Expressions for the projections and parametrizations and 2D and 3D plottings were developed within the framework of a symbolic calculus and visualization computer system. The content explored here may disclosure several possibilities of approaching this subject in exercises and student research projects for standard Analytical Geometry and Calculus courses as one more example of how mathematics provide us with tools for understanding the world we live. / Mestrado / Geometria / Mestre em Matemática
|
3 |
Tesselações hiperbólicas aplicadas a codificação de geodésicas e códigos de fonte / Hyperbolic tessellations applied to geodesic coding and source codesLeskow, Lucila Helena Allan, 1972- 07 November 2011 (has links)
Orientador: Reginaldo Palazzo Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-18T16:51:18Z (GMT). No. of bitstreams: 1
Leskow_LucilaHelenaAllan_D.pdf: 2583405 bytes, checksum: 3161d9deabaa60a8965a9e3d20ff36aa (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho apresentamos como contribuição um novo conjunto de tesselações do plano hiperbólico construídas a partir de uma tesselação bem conhecida, a tesselação de Farey. Nestas tesselações a região de Dirichlet é formada por polígonos hiperbólicos de n lados, com n > 3. Explorando as características dessas tesselações, apresentamos alguns tipos possíveis de aplicações. Inicialmente, estudando a relação existente entre a teoria das frações contínuas e a tesselação de Farey, propomos um novo método de codificação de geodésicas. A inovação deste método está no fato de ser possível realizar a codificação de uma geodésica pertencente a PSL(2,Z) em qualquer uma das tesselações ou seja, para qualquer valor de n com n > 3. Neste método mostramos como é possível associar as sequências cortantes de uma geodésica em cada tesselação à decomposição em frações contínuas do ponto atrator desta. Ainda explorando as características dessas novas tesselações, propomos dois tipos de aplicação em teoria de codificação de fontes discretas. Desenvolvendo dois novos códigos para compactação de fontes (um código de árvore e um código de bloco), estes dois métodos podem ser vistos como a generalização dos métodos de Elias e Tunstall para o caso hiperbólico / Abstract: In this work we present as contribution a new set of tessellations of the hyperbolic plane, built from a well known tessellation, the Farey tessellation. In this set of tessellations the Dirichlet region is made of hyperbolic polygons with n sides where n > 3. While studying these tessellations and theirs properties, we found some possible applications. In the first one, while exploring the relationship between the continued fractions theory and the Farey tessellation we propose a new method for coding geodesics. Using this method, it is possible to obtain a relationship between the cutting sequence of a geodesic belonging to PSL(2,Z) in each tessellation and the continued fraction decomposition of its attractor point. Exploring the characteristics of these tessellations we also propose two types of applications regarding the discrete memoryless source coding theory, a fixed-to-variable code and a variable length-to-fixed code. These methods can be seen as a generalized version of the Elias and Tunstall methods for the hyperbolic case / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
4 |
Limitantes para empacotamentos de esferas em variedades flag / Sphere packing bounds on flag manifoldsBressan, João Paulo, 1983- 11 September 2018 (has links)
Orientador: Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-09-11T21:20:45Z (GMT). No. of bitstreams: 1
Bressan_JoaoPaulo_D.pdf: 1164660 bytes, checksum: 4825edafe6fbea5e3bc43934bc528376 (MD5)
Previous issue date: 2012 / Resumo: A partir das desigualdades de Hamming e Gilbert-Varshamov obtém-se um limitante superior e um limitante inferior para o número de pontos de um código numa variedade flag geométrica. Isto é feito tomando-se uma estimativa para o volume de bolas geodésicas, que resulta de cálculos envolvendo a curvatura seccional destas variedades. Em particular, são derivados limitantes para empacotamentos de esferas numa variedade de Grassmann complexa. Um limitante superior para a distância mínima também é obtido através da inversa da função que calcula o volume de um chapéu esférico. Esta técnica geométrica também é aplicada no estudo de limitantes para empacotamentos em alguns casos particulares de variedades flag maximais. Através de procedimentos computacionais, tais limitantes são implementados numericamente em alguns exemplos. Uma motivação para este trabalho foi à busca de possíveis extensões de alguns resultados sobre as grassmanianas complexas, cujo interesse na área de comunicações vem de uma interpretação que pode ser feita da transmissão em canais MIMO não coerentes via códigos em tais variedades / Abstract: Upper and lower bounds for the number of points of codes in geometric flag manifolds are obtained from Hamming and Gilbert-Varshamov inequalities. This is done by taking an estimate for the volume of geodesic balls, as a result of calculations involving the sectional curvature of such manifolds. As a particular case, sphere packing bounds in complex Grassmann manifolds are derived. An upper bound on the minimum distance is also obtained through the inverse mapping for the volume of spherical caps. This geometric technique is also applied in the study of sphere packing bounds in some particular cases of full-flag manifolds. Such bounds are numerically implemented in some examples. One motivation for this work was the search for possible extensions of some results on complex Grassmann manifolds, which interest in communications comes from a model for the transmition on non-coherent MIMO channels via codes in such manifolds / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
5 |
Equigeodésicas e aplicações equiharmônicas em variedades flag generalizadas / Equigeodesics and equiharmonic maps on generalized flag manifoldsGrama, Lino Anderson da Silva, 1981- 17 August 2018 (has links)
Orientador: Caio José Colletti Negreiros / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T12:45:02Z (GMT). No. of bitstreams: 1
Grama_LinoAndersondaSilva_D.pdf: 1119551 bytes, checksum: d2dc2c993629f40f7976e91497c5d219 (MD5)
Previous issue date: 2011 / Resumo: O principal objetivo deste trabalho é o estudo de aplicações harmônicas em variedades flag generalizadas. Na primeira parte do trabalho, consideramos aplicações cujo domínio é uma superfície de Riemann. Provamos que toda aplicação holomorfa-horizontal na variedade flag é uma aplicação equiharmônica (ie, harmônica com respeito a cada métrica invariante na variedade flag). Obtemos também as fórmulas de Plucker para curvas holomorfa-horizontais na variedade flag maximal. Na segunda parte do trabalho, consideramos aplicações harmônicas cujo domínio possui dimensão 1 ( ie, geodésicas) na variedade flag. Provamos que toda variedade ag generalizada admite curvas que são geodésicas com respeito a cada métrica invariante. Tais curvas são chamadas equigeodésicas. Fornecemos uma descrição algébrica para tais curvas e exibimos famílias de equigeodésicas em diversas famílias de variedades flag / Abstract: The main goal of this work is the study of harmonic maps in generalized flag manifolds. In the first part of the work, we consider maps whose domain is a Riemann surface. We prove that every holomorphic-horizontal map in the flag manifold is an equiharmonic map (i.e. harmonic with respect to each invariant metric in the flag manifold). We also obtain the Plucker formulae for holomorphic-horizontal curves in full flag manifolds. In the second part of the work, we consider harmonic maps whose domain has dimension one (i.e. geodesics) in the ag manifold. We prove that every generalized flag manifold admit curves that are geodesics with respect to each invariant metric. Such curves are called equigeodesics. We provide an algebraic characterization for such curves and exhibit families of equigeodesics in several families of flag manifolds / Doutorado / Doutor em Matemática
|
Page generated in 0.0547 seconds