Spelling suggestions: "subject:"geographical parthenogenesis"" "subject:"ageographical parthenogenesis""
1 |
Evolution of asexuality in insects : Polyploidy, hybridization and geographical parthenogenesisLundmark, Magnus January 2007 (has links)
<p>Asexual reproduction and polyploidy are relatively rare in animals with chromosomal sex determination and always represent a derived condition. To accomplish asexual reproduction several changes in gene expression are required in the mechanism of oogenesis. Polyploidy increases the cell volume and also gives rise to alterations in general physiology. Nevertheless, there are asexual animals that not only survive but seem to be doing better than their sexual progenitors. This is expressed in the distribution pattern called geographical parthenogenesis. Using molecular phylogeny, I here examine the evolution of Otiorynchid weevils, mainly <i>Otiorhynchus scaber</i> and <i>sulcatus</i> in an attempt to trace the evolutionary history and find out what causes the variation in success of different parthenogens. I also evaluate the contribution of asexuality, hybridity and polyploidy as explanations behind geographical parthenogenesis in insects. I conclude that what is called <i>O. scaber</i> is, in fact, a set of geographical polyploids as polyploidy and not asexuality explains the difference in clonal success. I also argue that <i>O. sulcatus</i> is a recently formed clonal species of non-hybrid origin that may well be a good example of a true general purpose genotype. I find little support for asexuality or a hybrid origin as explanations behind geographical parthenogenesis in insects. Finally, I argue that polyploidy in all eukaryotes should be seen as an opportunity for the species evolution, not as a limitation that ensures the demise of the taxa.</p>
|
2 |
Evolution of asexuality in insects : Polyploidy, hybridization and geographical parthenogenesisLundmark, Magnus January 2007 (has links)
Asexual reproduction and polyploidy are relatively rare in animals with chromosomal sex determination and always represent a derived condition. To accomplish asexual reproduction several changes in gene expression are required in the mechanism of oogenesis. Polyploidy increases the cell volume and also gives rise to alterations in general physiology. Nevertheless, there are asexual animals that not only survive but seem to be doing better than their sexual progenitors. This is expressed in the distribution pattern called geographical parthenogenesis. Using molecular phylogeny, I here examine the evolution of Otiorynchid weevils, mainly Otiorhynchus scaber and sulcatus in an attempt to trace the evolutionary history and find out what causes the variation in success of different parthenogens. I also evaluate the contribution of asexuality, hybridity and polyploidy as explanations behind geographical parthenogenesis in insects. I conclude that what is called O. scaber is, in fact, a set of geographical polyploids as polyploidy and not asexuality explains the difference in clonal success. I also argue that O. sulcatus is a recently formed clonal species of non-hybrid origin that may well be a good example of a true general purpose genotype. I find little support for asexuality or a hybrid origin as explanations behind geographical parthenogenesis in insects. Finally, I argue that polyploidy in all eukaryotes should be seen as an opportunity for the species evolution, not as a limitation that ensures the demise of the taxa.
|
3 |
Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum intermedium Munro Ex Morong (Poaceae)Karunarathne, Piyal 14 January 2019 (has links)
No description available.
|
4 |
Reproductive strategies of alpine apomictic plants under different ecological conditionsSchinkel, Christoph Carl-Friedrich 24 March 2020 (has links)
No description available.
|
Page generated in 0.3306 seconds