• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of asexuality in insects : Polyploidy, hybridization and geographical parthenogenesis

Lundmark, Magnus January 2007 (has links)
<p>Asexual reproduction and polyploidy are relatively rare in animals with chromosomal sex determination and always represent a derived condition. To accomplish asexual reproduction several changes in gene expression are required in the mechanism of oogenesis. Polyploidy increases the cell volume and also gives rise to alterations in general physiology. Nevertheless, there are asexual animals that not only survive but seem to be doing better than their sexual progenitors. This is expressed in the distribution pattern called geographical parthenogenesis. Using molecular phylogeny, I here examine the evolution of Otiorynchid weevils, mainly <i>Otiorhynchus scaber</i> and <i>sulcatus</i> in an attempt to trace the evolutionary history and find out what causes the variation in success of different parthenogens. I also evaluate the contribution of asexuality, hybridity and polyploidy as explanations behind geographical parthenogenesis in insects. I conclude that what is called <i>O. scaber</i> is, in fact, a set of geographical polyploids as polyploidy and not asexuality explains the difference in clonal success. I also argue that <i>O. sulcatus</i> is a recently formed clonal species of non-hybrid origin that may well be a good example of a true general purpose genotype. I find little support for asexuality or a hybrid origin as explanations behind geographical parthenogenesis in insects. Finally, I argue that polyploidy in all eukaryotes should be seen as an opportunity for the species evolution, not as a limitation that ensures the demise of the taxa.</p>
2

Evolution of asexuality in insects : Polyploidy, hybridization and geographical parthenogenesis

Lundmark, Magnus January 2007 (has links)
Asexual reproduction and polyploidy are relatively rare in animals with chromosomal sex determination and always represent a derived condition. To accomplish asexual reproduction several changes in gene expression are required in the mechanism of oogenesis. Polyploidy increases the cell volume and also gives rise to alterations in general physiology. Nevertheless, there are asexual animals that not only survive but seem to be doing better than their sexual progenitors. This is expressed in the distribution pattern called geographical parthenogenesis. Using molecular phylogeny, I here examine the evolution of Otiorynchid weevils, mainly Otiorhynchus scaber and sulcatus in an attempt to trace the evolutionary history and find out what causes the variation in success of different parthenogens. I also evaluate the contribution of asexuality, hybridity and polyploidy as explanations behind geographical parthenogenesis in insects. I conclude that what is called O. scaber is, in fact, a set of geographical polyploids as polyploidy and not asexuality explains the difference in clonal success. I also argue that O. sulcatus is a recently formed clonal species of non-hybrid origin that may well be a good example of a true general purpose genotype. I find little support for asexuality or a hybrid origin as explanations behind geographical parthenogenesis in insects. Finally, I argue that polyploidy in all eukaryotes should be seen as an opportunity for the species evolution, not as a limitation that ensures the demise of the taxa.
3

Cytotype Associations, Ecological Divergence and Genetic Variation in the Apomictic Complex Paspalum intermedium Munro Ex Morong (Poaceae)

Karunarathne, Piyal 14 January 2019 (has links)
No description available.
4

Reproductive strategies of alpine apomictic plants under different ecological conditions

Schinkel, Christoph Carl-Friedrich 24 March 2020 (has links)
No description available.

Page generated in 0.6465 seconds