• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 12
  • 12
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The magmatic-hydrothermal architecture of the Archean Volcanic Massive Sulfide (VMS) System at Panorama, Pilbara, Western Australia

Drieberg, Susan L. January 2003 (has links)
[Truncated abstract. Formulae and special characters can only be approximated here. Please see the pdf version of this abstract for an accurate representation.] The 3.24 Ga Panorama VMS District, located in the Pilbara Craton of Western Australia, is exposed as a cross-section through subvolcanic granite intrusions and a coeval submarine volcanic sequence that hosts Zn-Cu mineralization. The near-complete exposure across the district, the very low metamorphic grade, and the remarkable preservation of primary igneous and volcanic textures provides an unparalleled opportunity to examine the P-T-X-source evolution of a VMS ore-forming system and to assess the role of the subvolcanic intrusions as heat sources and/or metal contributors to the overlying VMS hydrothermal system. Detailed mapping of the Panorama VMS District has revealed seven major vein types related to the VMS hydrothermal system or to the subvolcanic intrusions. (1) Quartz-chalcopyrite veins, hosted in granophyric granite immediately beneath the granite-volcanic contact, formed prior to main stage VMS hydrothermal convection, and were precipitated from mixed H2OCO 2-NaCl-KCl fluids with variable salinities (2.5 to 8.5 wt% NaCl equiv). (2) Quartz-sericite veins, ubiquitous across the top 50m of the volcanic sequence, were formed from an Archean seawater with a salinity of 9.7 to 11.2 wt% NaCl equiv at temperatures of 90° to 135°C. These veins formed synchronous with the regional feldspar-sericite-quartz-ankerite alteration during seawater recharge into the main stage VMS hydrothermal convection cells. (3) Quartz-pyrite veins hosted in granophyric granite, and (4) quartz-carbonate-pyrite veins hosted in andesitebasalt, also formed from relatively unevolved Archean seawater (5.5 to 10.1 wt% NaCl equiv; 150° to 225°C), but during the collapse of the VMS hydrothermal system when cool, unmodified seawater invaded the top of the subvolcanic intrusions. (5) Quartz-topaz-muscovite greisen, (6) quartz-chlorite-chalcopyrite vein greisen, and (7) hydrothermal Cu-Zn-Sn veins are hosted in the subvolcanic intrusions. Primary H2O-NaCl-CaCl2 fluid inclusions in the vein greisens were complex high temperature hypersaline inclusions (up to 590°C and up to 56 wt% NaCl equiv). The H2O-CO2-NaCl fluid inclusions in the Cu-Zn-Sn veins have variable salinities, ranging from 4.9 to 14.1 wt% NaCl equiv, and homogenization temperatures ranging from 160° to 325°C. The hydrothermal quartz veins and magmatic metasomatic phases in the subvolcanic intrusions were formed from a magmatic-hydrothermal fluid that had evolved through wallrock reactions, cooling, and finally mixing with seawater-derived VMS hydrothermal fluids.
32

The Archaean silicon cycle insights from silicon isotopes and Ge/Si ratios in banded iron formations, palaeosols and shales

Delvigne, Camille 05 September 2012 (has links)
The external silicon cycle during the Precambrian (4.5-0.5 Ga) is not well understood despite its key significance to apprehend ancient dynamics at the surface of the Earth. In the absence of silicifying organisms, external silicon cycle dramatically differs from nowadays. Our current understanding of Precambrian oceans is limited to the assumption that silicon concentrations were close to saturation of amorphous silica. This thesis aims to bring new insights to different processes that controlled the geochemical silicon cycle during the Archaean (3.8-2.5 Ga). Bulk rock Ge/Si ratio and Si isotopes (δ30Si) offer ideal tracers to unravel different processes that control the Si cycle given their sensitivity to fractionation under near-surface conditions. <p>First, this study focuses on Si inputs and outputs to ocean over a limited time period (~2.95 Ga Pongola Supergroup, South Africa) through the study of a palaeosol sequence and a contemporaneous banded iron formation. The palaeosol study offers precious clues in the comprehension of Archaean weathering processes and Si transfer from continent to ocean. Desilication and iron leaching were shown to be the major Archaean weathering processes. The occurrence of weathering residues issued of these processes as major component in fine-grained detrital sedimentary mass (shales) attests that identified weathering processes are widely developed and suggest an important dissolved Si flux from continent to the ocean. In parallel, banded iron formations (BIFs), typically characterised by alternation of iron-rich and silica-rich layers, represent an extraordinary record of the ocean-derived silica precipitation throughout the Precambrian. A detailed study of a 2.95 Ga BIF with excellent stratigraphic constraints identifies a seawater reservoir mixed with significant freshwater and very limited amount of high temperature hydrothermal fluids as the parental water mass from which BIFs precipitated. In addition, the export of silicon promoted by the silicon adsorption onto Fe-oxyhydroxides is evidenced. Then, both Si- and Fe-rich layers of BIFs have a common source water mass and a common siliceous ferric oxyhydroxides precursor. Thus, both palaeosols and BIFs highlight the significance of continental inputs to ocean, generally under- estimated or neglected, as well as the close link between Fe and Si cycles. <p>In a second time, this study explores secular changes in the Si cycle along the Precambrian. During this timespan, the world ocean underwent a progressive decrease in hydrothermal inputs and a long-term cooling. Effects of declining temperature over the oceanic Si cycle are highlighted by increasing δ30Si signatures of both chemically precipitated chert and BIF through time within the 3.8-2.5 Ga time interval. Interestingly, Si isotope compositions of BIF are shown to be kept systematically lighter of about 1.5‰ than contemporaneous cherts suggesting that both depositions occurred through different mechanisms. Along with the progressive increase of δ30Si signature, a decrease in Ge/Si ratios is attributed to a decrease in hydrothermal inputs along with the development of large and widespread desilication during continental weathering.<p><p><p>Le cycle externe du silicium au précambrien (4.5-0.5 Ga) reste mal compris malgré sa position clé dans la compréhension des processus opérant à la surface de la Terre primitive. En l’absence d’organismes sécrétant un squelette externe en silice, le cycle précambrien du silicium était vraisemblablement très différent de celui que nous connaissons à l’heure actuelle. Notre conception de l’océan archéen est limitée à l’hypothèse d’une concentration en silicium proche de la saturation en silice amorphe. Cette thèse vise à une meilleure compréhension des processus qui contrôlaient le cycle géochimique externe du silicium à l’archéen (3.8-2.5 Ga). Dans cette optique, le rapport germanium/silicium (Ge/Si) et les isotopes stables du silicium (δ30Si) représentent des traceurs idéaux pour démêler les différents processus contrôlant le cycle du Si. <p>Dans un premier temps, cette étude se focalise sur les apports et les exports de silicium à l’océan sur une période de temps restreinte (~2.95 Ga Pongola Supergroup, Afrique du Sud) via l’étude d’un paléosol et d’un dépôt sédimentaire de précipitation chimique quasi-contemporain. L’étude du paléosol apporte de précieux indices quant aux processus d’altération archéens et aux transferts de silicium des continents vers l’océan. Ainsi, la désilicification et le lessivage du fer apparaissent comme des processus majeurs de l’altération archéenne. La présence de résidus issus de ces processus d’altération en tant que composants majeurs de dépôts détritiques (shales) atteste de la globalité de ces processus et suggère des flux significatifs en silicium dissout des continents vers l’océan. En parallèle, les « banded iron formations » (BIFs), caractérisés par une alternance de niveaux riches en fer et en silice, représentent un enregistrement extraordinaire et caractéristique du précambrien de précipitation de silice à partir de l’océan. Une étude détaillée d’un dépôt de BIFs permet d’identifier une contribution importante des eaux douces dans la masse d’eau à partir de laquelle ces roches sont précipitées. Par ailleurs, un mécanisme d’export de silicium via absorption sur des oxyhydroxydes de fer est mis en évidence. Ainsi, les niveaux riches en fer et riche en silice constituant les BIFs auraient une même origine, un réservoir d’eau de mer mélangée avec des eaux douces et une contribution minime de fluides hydrothermaux de haute température, et un même précurseur commun. Dès lors, tant les paléosols que les BIFs mettent en évidence l’importance des apports continentaux à l’océan, souvent négligés ou sous estimés, ainsi que le lien étroit entre les cycles du fer et du silicium.<p>Dans un second temps, cette étude explore l’évolution du cycle du silicium au cours du précambrien. Durant cette période, l’océan voit les apports hydrothermaux ainsi que sa température diminuer. Dans l’intervalle de temps 3.8-2.5 Ga, les effets de tels changements sur le cycle du silicium sont marqués par un alourdissement progressif des signatures isotopiques des cherts et des BIFs. Le fort parallélisme entre l’évolution temporelle des compositions isotopiques des deux précipités met en évidence leur origine commune, l’océan. Cependant, les compositions isotopiques des BIFs sont systématiquement plus légères d’environ 1.5‰ que les signatures enregistrées pas les cherts. Cette différence est interprétée comme le reflet de mécanismes de dépôts différents. L’alourdissement progressif des compositions isotopiques concomitant à une diminution des rapports Ge/Si reflètent une diminution des apports hydrothermaux ainsi que la mise en place d’une désilicification de plus en plus importante et/ou généralisée lors de l’altération des continents.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.099 seconds