• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 10
  • 9
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 69
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How Hot, How Deep, How Long: Constraints on the Tectono-Metamorphic Evolution of Granulite Terranes

Guevara, Victor Emmanuel 05 June 2017 (has links)
Granulites are the dense, strong metamorphic rocks that are produced during high- (HT) to ultrahigh-temperature metamorphism (UHT) and partial melting of Earth's crust. Granulites are ubiquitous in exhumed Archean cratons and are thought to comprise much of Earth's stable lower crust. Understanding the mechanisms responsible for crustal heating in Archean terranes is thus paramount to understanding the stabilisation of early continental crust, and whether such mechanisms resemble modern tectonic processes. It is therefore important to quantify the pressure–temperature–time (P–T–t) paths of Archean granulites, as such paths can be diagnostic of heating mechanism. This dissertation explores: 1) novel approaches to reconstructing the P–T–t paths of granulites, and 2) what the deciphered P–T–t paths of rocks from two Archean granulite terranes reveal about Archean crustal heating. The first chapter shows how petrologic modelling at multiple scales from a texturally heterogeneous granulite can provide "snapshots" of the P–T path, which would be difficult to reconstruct otherwise. The remaining chapters are focused on reconstructing the P–T–t paths of two Archean granulite terranes: the Beartooth Mountains, and the Pikwitonei granulite domain (PGD). The second and third chapters present evidence for cryptic HT metamorphism of the Beartooth granulites at ~2.7 Ga characterized by rapid (< 1 Ma) exhumation at HT and fast cooling (~10-100 C/Ma) in the middle crust. This suggests advective/conductive heating over short length-scales. In the fourth chapter, thermobarometric data suggest the western PGD experienced UHT decompression followed by cooling in the lower crust. High-precision zircon and monazite dates reveal apparently episodic crystallization over at least ~24 Ma. This episodicity could reflect multiple thermal cycles or the control of local reactions on zircon/monazite crystallization during cooling. High-spatial resolution petrochronology provides temporal constraints on prograde metamorphism. These data suggest metamorphism in the PGD was driven by a long-lived heat source over large length-scales near the base of the lithosphere. Disparities in the timescales, length-scales, and the depth and amount of heating between the terranes may suggest different crustal heating mechanisms in each, and that the late Archean Earth may have been tectonically diverse. / Ph. D.
2

Provenance of Siliclastic Sedimentary Rocks in the Eastern Portion of the North Caribou Greenstone Belt

Bath, Octavia January 2017 (has links)
The Zeemal Heaton Lake metasedimentary assemblage comprises ~50% of the eastern limb of the North Caribou greenstone belt, which hosts the Musselwhite gold deposit (~ 5.4 Moz Au). The metasedimentary assemblage is divided into two based on their distribution: the Central-belt and North-rim of the belt. The Zeemal Heaton Lake metasedimentary rocks have been interpreted to represent a turbidite succession, consisting of pelite, arkose, wacke and conglomerate. Detrital U-Pb zircon age populations from this study indicate variable sources in the Central-belt metasediments with a maximum age of deposition of 2798.8 ± 29 Ma, while metasediments along the North portion of the limb display a maximum age of deposition of 2696 ± 39 Ma. This indicates the likelihood of two discrete basins with the Zeemal Heaton Lake assemblage. Neodymium isotopic values for the sedimentary rocks along the North-rim of the belt display εNd2680Ma ranging from -1.2 to -0.9. An overlapping but slightly more evolved signature shown in the Central portion with values of εNd2800Ma -1.6 to 0.1. This indicates detritus for the Central-belt was likely sourced from the older (~2850 Ma), (tonalite-granodiorite) surrounding intrusions. The North-rim sediments were sourced (in part) from the younger (~2700 Ma) granitic intrusions and rhyolites. The surrounding batholiths display εNdt overlapping with North-rim sedimentary rocks, however, indicate significant contribution beyond these immediate surrounding batholiths, which may include older mafic (2982 ± 0.8, 2870 ±2 Ma), younger rhyolitic unit (2723 ± 2 Ma) or more distal sources than the intrusions immediately adjacent to the belt. Peak metamorphic mineral assemblages indicate a minimum of amphibolite facies-garnet zone or greater across the Central-belt portion of the greenstone belt. The North-rim metasediments display evidence for aureole metamorphism which may overprint earlier regional metamorphism. Nitrogen abundance and δ15N values of biotite of the Zeemal Heaton Lake metasedimentary assemblage indicate variable values than those associated with mineralization at the Musselwhite Mine, which is reported by Isaacs (2008). Mineralizing fluids from the Musselwhite mine have been interpreted by Issacs (2008) to be related to both metamorphic and magmatic fluids. Fluids associated with the Eyapamikama and/or Zeemal Heaton Lake metasediments appear to be metamorphic with minor magmatic influence near regional shear zones, but not directly related to the auriferous fluids which formed the Musselwhite mine.
3

Evolutionary Aspects of Archean Kolli-Massif, Southern India : An Archive of Crustal Processes

Mathews, George Paul January 2015 (has links) (PDF)
The continental crust is the record of the history of the Earth, of the processes and events that have contributed to the planet's evolution. It is now understood that the continental crust is growing continuously since the early ages of the Earth. Archean-Proterozoic boundary marks one of the major transition periods in the crustal evolution processes. However, there are only few crustal remnants available to investigate this milestone of Earth history, reported with significant chemical discontinuity. The Neoarchean crustal fragments of southern India provide a window to probe the processes that happened during such transitions. The geology of southern India can be broadly divided in to the Archean Dharwar Craton (DC) of granites and greenstones belts to the north and an assembly of crustal blocks experienced granulite grade metamorphism to the south from Archean to Neoproterozoic, namely the Southern Granulite Terrain (SGT). The relationship between DC and SGT terranes are not well established, primarily due to lack of studies on the growth and evolution on each of the crustal blocks. This study focuses on the crustal tract between Salem Attur Shear Zone and the Cauvery Shear Zone of the SGT. This region lies to the east of Palghat Cauvery Shear System, which is considered as dextral shear zone, suture zone, Neoproterozoic terrain boundary and reworked Archean crust in the previous studies. However, so far no comprehensive studies had been reported from the region that consists of a spectrum of rocks charnockite, granitic gneiss, hornblende gneiss, granite and mafic-ultramafics litho-units inclusive of a layered complex. The objectives of this study are 1) to understand the crustal formation processes in Kolli-massif 2) to delineate the chronology of events or processes through radiometric dating. 3) to understand the crustal reworking and evolutionary processes in Kolli-massif . Major tools used in this study include petrology (field studies and petrography), geochemistry, U-Pb Zircon geochronology, Sr-Nd and Hf Isotopes. The content of this thesis is divided in to six chapters. Chapter 1 is an introduction to the topic – crustal growth. It discusses the importance of continental crustal process in understanding the evolutionary history of the 2500 Ma Earth. It also emphasizes on the reason to investigate Kolli-massif which is a part of the Southern Granulite Terrain. Chapter 2 deals with the literature review which is relevant in the context of the study. The chapter discusses topics like structure of the Earth crust, various models proposed on the generation of continental crust (continuous as well as episodic) and also the models discussed in the literature on the generation of TTG (subduction of oceanic crust and ocean plateau and non-subduction). An overall view on crustal reworking and recycling is also included. The chapter ends with a short review on southern Indian crustal tectonics and a detailed discussion on the evolution Palghat Cauvery Shear Zone. Chapter 3 describes the geology of the study area Kolli-massif in details. This includes the structural, lithological units, field relation and geochronolgical aspects combined and their implications on the crustal assembly of southern India. Chapter 4 is a discussion on the results, interpretation and implications of crustal generation and evolution of the Archean Kolli-massif. This chapter is subdivided to four. Chapter 4.1 deals with possible source and tectonic settings for the magma generation which lead to the formation of Archean Sittampundi Complex. The whole rock and spinel chemistry two different suggests both MORB and arc signature for these rocks. Although this is such a quite contrasting scenario, such scenarios are known to occur in an intra-oceanic subduction in the Archean as well as modern analogue. The search for MOR setting lead to Kanjamalai, where major rocks like metagabbro show geochemical affinity, as described in Chapter 4.2. The presence of rocks like plagiogranite also supports MORB affinity. Based on field observations and above evidences Kanjamalai complex is interpreted as subducted remnant of an Archean Mid Oceanic Ridge. Chapter 4.3 deals with the major rock type of the region charnockite and granitic gneiss. The whole geochemical chemistry suggests arc signatures (depleted HFS elements, enriched LREE) and negative Nd and Hf isotope suggests reworked magma. However, the high HREE content and absence of Eu anomaly in the charnockite but reverse case of granitic gneiss indicates they might have of a different source and may not solely by the subduction of oceanic crust described in chapter 4.1. Combining the results from Hf and Nd isotopes that shows the presence of an older crust of age 2700-2900 Ma, it can be concluded that the an older oceanic crust, probably with an ocean plateau was part of subduction and magma genesis. The presence of garnet websterite describes accretion in operation in the generation of Kolli-massif. Chapter 4.4 deals with crustal recycling. The results on the investigation on meta-BIFs yielded results that can be interpreted that the iron formations were deeply subducted. The proposal of accretionary tectonics is also supported by the presence of meta-BIFs in the shear zone with in the Kolli-massif. Chapter 5 deals with the Neoproterozic reworking of the Archean Kolli-massif. The investigations on the sapphirine bearing granulite suggest that the rocks have undergone UHT metamorphism (6Kbar and 925˚C). The geochronogical evidences shows that the zircon rim growth ca. 550 Ma over a 2480 Ma crust. This suggests crustal reworking that would have happened during the Gondwana amalgamation happened during the Neoproterozoic time.It is therefore concluded in Chapter 6 that the Kolli-massif is having an Archean nucleus that was grown by the arc accretion. This reworked during the regional metamorphism along with the Gondwana metamorphism in the Neoproterozoic. Further scope of this study is also discussed.
4

REGIONAL VOLCANOGENIC MASSIVE SULPHIDE METALLOGENY OF THE NEOARCHEAN GREENSTONE BELT ASSEMBLAGES ON THE NORTHWEST MARGIN OF THE WAWA SUBPROVINCE, SUPERIOR PROVINCE

Lodge, Robert Wilfred David 08 October 2013 (has links)
The ca. 2720 Ma Vermilion, Shebandowan, Winston Lake, and Manitouwadge greenstone belts (VGB, SGB, WGB, and MGB, respectively) are located along the northern margin of the Wawa subprovince. They are interpreted to have formed in broadly similar rifted arc to back-arc environments, but their base and precious endowment and, in particular, their endowment in VMS deposits, differ markedly. These difference is metal endowment reflect differences in their metallogenic history that were examined by comparing their regional, belt-scale lithostratigraphy, chemostratigraphy, petrogenesis and tectonic history constrained by new U-Pb zircon geochronology. The MGB is the most VMS-endowed and isotopically juvenile (Pb and Nd) greenstone belt. It has a trace element chemostratigraphy that is consistent with a rifted arc to back-arc environment. The trace element chemostratigraphy of the WGB is also consistent with a rifted-arc to back arc geodynamic setting. The Winston Lake VMS deposits formed during early rifting of the arc and their timing is tightly constrained at ca. 2720 Ma by U-Pb ages of the host felsic strata and post-VMS Zenith gabbro. The Zn-dominated VMS mineralization formed from hydrothermal fluids that were <300 ° and were possibly boiling in relatively shallow water. The trace element chemostratigraphy of the VGB, SGB, and WGB indicates a plume-driven rifted arc to back-arc geodynamic settings. The composition of VMS mineralization, lithofacies, and alteration in these belts are consistent with a relatively shallower-water environment, which may have compromised VMS formation. The high-Mg andesites that are typical of, but restricted to, the SGB formed during compressional “hot” subduction, which resulted in the development of a thicker arc crust. This thicker crust may have inhibited VMS formation, but favoured the formation of magmatic sulphide and gold mineralization. New detrital and magmatic zircon U-Pb geochronology allowed comparison and correlation of lithostratigraphy and metallogeny between the greenstone belts. U-Pb ages within the VGB also defined younger, Timiskaming-type volcanic and sedimentary strata that are coeval with similar deposits in the SGB. These strata are spatially and temporally associated with gold mineralization in both belts and are coeval with similar deformation and magmatic events in the WGB and along the northern margin of the Wawa-Abitibi terrane. This indicates that the formation of Timiskaming-type pull apart basins in the northern part of the Wawa-Abitibi terrane were synchronous, and earlier than in the southern part, which is consistent with oblique convergence of the Wawa-Abitibi terrane onto the Superior Province. Detrital zircon geochronology also revealed the presence of a >2720 Ma iv zircon population within the Timiskaming-type sedimentary strata of the SGB. This is consistent with their derivation from the Wabigoon subprovince and suggests trans-terrane transport of detritus in a foreland –type basin resulting from uplift of the Wabigoon subprovince during accretion of the Wawa subprovince.
5

The distribution and controls on silver mineralization in the Main Zone of the 2.68 Ga Archean Hackett River Zn-Pb-Cu-Ag volcanogenic massive sulfide (VMS) deposit, Nunavut, Canada

Grant, Hannah Lucy Jane 12 March 2009 (has links)
The 2.68 Ga Zn-Pb-Cu-Ag Hackett River Main Zone (HRMZ) volcanogenic massive sulfide (VMS) deposit, within the Hackett River Greenstone Belt of the Archean Slave Craton is highly enriched in Ag (and Pb) compared to other VMS deposits of a similar age and type. The mineralization has been sub-divided into five categories based on mineralogy, textures and stratigraphic location: 1) disseminated footwall sulfides, 2) copper-rich stringer sulfides, 3) pyrite-poor sphalerite-pyrrhotite-chalcopyrite mineralization located at the top of the stringer zone, 4) mineralization in calc-silicate altered units and 5) sphalerite-pyrite massive sulfide mineralization. Using a mass-balance for Ag calculated from electron microprobe analyses, pyrrhotite and chalcopyrite in type 1 mineralization contain negligible Ag and in type 2, Bi-Ag-(Pb) sulfides, Ag-Bi-Se enriched galena and chalcopyrite are the dominant Ag hosts. Within type 3, freibergite and galena are the main silver hosts. In type 4, Ag is hosted in disseminated electrum and freibergite while freibergite in type 5 hosts 99% of the Ag. Overall, Ag-rich freibergite contains 79.4% of the total Ag, chalcopyrite hosts 6.3% and galena contains 1.8% of the Ag. Trace minerals such as electrum, stephanite, acanthite and Bi-bearing sulfides host the remainder of the Ag (12.5%) and have a restricted spatial distribution. Mineral assemblages have undergone pervasive recrystallization and annealing during amphibolite grade metamorphism with localized redistribution of base and precious metals from metamorphism at a grain scale only. Within freibergite and chalcopyrite, Ag directly substitutes for Cu within the mineral lattice and replaces Pb in galena by coupled substitution with Bi and to a lesser extent, Sb. The principal controls on Ag residence in the HRMZ are temperature and redox conditions (which varies with distance to the hydrothermal vent) and the ratio of Bi and Sb available for coupled substitution with silver within galena. Subsequent deposit-scale zone refining is the principal factor influencing the distribution of Ag. Lower temperatures and more oxidizing conditions favour partitioning of Ag into freibergite and less oxidizing conditions favour galena. At higher temperatures, the most reducing conditions favour incorporation of Ag in Ag-Bi rich galena (plus Se) and Bi-bearing sulfides or Ag-rich chalcopyrite under lesser reducing conditions. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2009-03-12 10:46:49.993
6

Petrology and Geochemistry of an Archean Migmatite Terrain, Favourable Lake Area, Northwest Ontario

Gillespie, Randall T. 04 1900 (has links)
<p> The "F-Zone" is part of a migmatitic, radiometrically anomalous belt which forms the contact between a large granitic batholith and a region of homogeneous diatexite. Petrographic and geochemical analysis (including whole rock and rare-earth element analyses) of these three units has been carried out. Results indicate that the batholith was formed by partial fusion of sedimentary and volcanic material; the homogeneous diatexite arose in a similar way although fusion was less complete and; the migmatite incorporates material from both of these units. Late stage metasomatic-hydrothermal activity has concentrated uranium from the country rock in the migmatite zone.</p> / Thesis / Bachelor of Science (BSc)
7

Archean Variolitic Lavas from Munro Township, Ontario

Saunders, David 05 1900 (has links)
<p> Chemical variations between the matrix and variole fractions of variolitic lavas are quite distinct. Analyses for major. and trace elements and trace gold content was carried out on separated fractions of matrix and varioles from several handspecimens. </p> <p> Discussion of the results (including the origin of variolitic textures) was aided by thin section analysis and field relationships. </p> / Thesis / Bachelor of Science (BSc)
8

Les cherts Archéens de la ceinture de roches vertes de Barberton (3.5-3.2Ga), Afrique du Sud. Processus de formation et utilisation comme proxys paleo-environnementaux / Archean cherts from the Barberton Greenstone Belt (3.5-3.2Ga), South africa. Formation process and usability as paleo-environmental proxies

Ledevin, Morgane 06 June 2013 (has links)
Les cherts archéens permettent de contraindre les environnements primitifs qui ont vu l’apparition de la vie sur Terre. Ces roches siliceuses se forment selon trois processus : les C-cherts (cherts primaires) se forment par précipitation chimique de silice océanique sur le plancher, sous la forme d’une boue siliceuse ou en tant que ciment dans les sédiments de surface; les F-cherts (cherts de fracture) précipitent dans les fractures de la crôute depuis les fluides circulant; les S-cherts (cherts secondaires) sont issus de la silicification de roches préexistantes lors de la percolation de fluides enrichis en silice. Ces processus sont largement acceptés mais des questions majeures subsistent : comment reconnaître ces différents types de chert ? Quelle est l’origine de la silice et sous quelle forme a-t-elle précipité ? Quel signal chimique est porté par les cherts et comment s’en servir pour les reconstructions paléo-environnementales ? Ces questions sont abordées à travers trois sites de la ceinture de roches vertes de Barberton, en Afrique du Sud. L’approche adoptée combine l’analyse des structures sédimentaires et de déformation, de la pétrologie et de la composition chimique et isotopique de ces unités. Dans ces sites, la formation des cherts est étroitement liée à l’environnement de mise en place. La sédimentation clastique (turbidites) est à l’origine des C-cherts de Komati River, déposés sous la forme d’une boue siliceuse par adsorption de silice sur les particules argileuses en suspension. En absence de contribution continentale, les alternances de cherts noirs et blancs de Buck Reef sont interprétées comme issues de variations climatiques à l’échelle saisonnières (chert noir), voire glaciaires/inter-glaciaires (chert blanc). Les cherts de fracture de Barite Valley sont liés à la précipitation de silice depuis une suspension colloïdale thixotrope remontant à travers la croûte. La composition chimique des cherts est contrôlée par leur environnement de mise en place, et représente un mélange entre une phase siliceuse et une phase contaminante, indépendamment des processus qui ont précipité la silice. Les cherts de Komati River et de Barite Valley sont enrichis en Al, K, Ti, HFSE et en REE, ce qui est attribué à la contamination de la matrice siliceuse par la présence de phyllosilicate. Une telle contribution clastique peut expliquer les larges gammes de δ30Si dans les cherts de Komati River (-0.69‰à +3.89‰), et la majorité des valeurs positives est probablement liée à la contribution de l’eau de mer. Dans les dykes de Barite Valley, les δ30Si très négatifs (-4.5‰ à +0.22‰) sont cohérents avec l’origine hydrothermale basse température des fluides initiaux. A Buck Reef, l’absence de contribution continentale s’exprime dans les cherts blancs par une minéralogie exclusivement microquartzitique et par des concentrations extrêmement faibles en éléments traces (i.e. ΣHFSE et ΣREE<1ppm). 2% de carbonates et 3-4% de matériel continental (e.g. argiles) suffisent à masquer le signal siliceux dans ces cherts purs. Nous ne pouvons conclure sur la présence d’un signal océanique dans ces cherts par manque de fiabilité des proxys océaniques modernes (appauvrissement en LREE, enrichissement en La et Y). Reconnus à la fois dans des quartz océaniques, hydrothermaux, magmatiques et pegmatitiques, ils ne permettent pas d’identifier un signal d’eau de mer dans les cherts archéens. Les δ 18O de ces cherts indiquent la présence de circulations fluides secondaires à moins de 100°C, et leurs δ 30Si négatifs ou positifs (-2.23‰ et +1.13‰ en moyenne) montrent la contribution de fluides différents au moment de leur formation. Le couplage des observations pétrologiques et de terrain est la seule approche fiable pour reconnaître le mode de mise en place des cherts. Leur composition chimique dépend plus des conditions environnementales que des caractéristiques du fluide initial. / Archean cherts potentially constrain the primitive environment in which life emerged and evolved. These siliceous rocks formed by three processes : C-cherts (primary cherts) formed by the chemical precipitation of oceanic silica, either as a siliceous ooze (or silica gel) on the seabed, or as cement within still soft sediments at the surface ; F-cherts (fracturefilling cherts) precipitated from circulating fluids in concordant or crosscutting veins in the shallow crust ; S-cherts (secondary cherts) are the result of the metasomatism (silicification) of preexisting rocks during the percolation of silica-rich fluids. These processes are generally accepted but major questions remain unsolved : how to recognize various chert types ? Where does the silica come from and how did it precipitate ? What chemical signal is hosted in cherts and how can it be used for paleo environmental reconstructions ? These questions are addressed here using three sites in the Barberton Greenstone Belt, South Africa, which contain a variety of cherts deposited in very different environments. The approach combines field description of sedimentary and deformation structures, the characterization of various chert petrologies, and the study of their chemical and isotopic composition. In these three sites, chert formation strongly depends on the environmental setting. Clastic sedimentation is directly linked to C-chert formation at Komati River, where the silica was deposited as a viscous, siliceous ooze by sorption process onto suspended clay particles. A continental contribution is absent at Buck Reef, and the black and white banded cherts (C-cherts) are interpreted to have formed by chemical precipitation of oceanic silica during seasonal (black chert) and maybe glacial/inter-glacial (white chert) climatic variations. The fracture-filling cherts from Barite Valley precipitated from a thixotropic colloidal suspension that migrated upward through the crust. The chemical compositions of cherts from these three sites are essentially controlled by the environment of deposition, and represent mixtures of a siliceous and contaminant phases, independent from the silica precipitation mode. Komati River C-cherts and Barite Valley F-cherts are both enriched in Al, K, Ti, HFSE and REE, which represents the contamination by phyllosilicates of the microquartzitic fabrics. Such a clastic contribution may account for the wide range of δ30Si in Komati River cherts (-0.69‰ to +3.89‰) although the majority of positive values is attributed to seawater involvement. In the dykes, δ30Si is strongly negative (-4.5‰to +0.22‰) and is consistent with the low-temperature hydrothermal nature of these fluids. At Buck Reef, the lack of continental contribution is expressed in the white cherts, by a mineralogy exclusively composed of microquartz, and by extremely low trace element contents, i.e. HFSE and REE below 1ppm. We calculate that 2% of carbonates and 3-4% of clastic particles (i.e. clay, feldspar) would be enough to mask the silica composition in these high purity cherts. A marine signature was not recognized in their geochemistry because of the unreliability of commonly used modern proxys (i.e. LREE depletion, La and Y enrichment). These features were identified in oceanic, hydrothermal, magmatic and pegmatitic quartz and thus do not reliably identify an oceanic signal in Archean cherts. Because the δ 18O values in these white cherts indicates secondary fluid circulations at <100°C, their negative or positive δ30Si values (-2.23‰ and +1.13‰ in average) most probably represent different fluid contributions at the time they formed. The combination of field and petrological observations appears to be the most reliable approach to classify cherts and to deduce their origin, and we show here that their chemical composition depends more on the environmental conditions than on the primary fluid characteristics.
9

An Investigation of the ca. 2.7 Ga Late Archean Magmatic Event (LAME) in the Superior Province using 1-D Thermal Modelling

Ahmad, Seema 03 March 2010 (has links)
The Late Archean Magmatic Event (LAME), ca. 2.7 Ga, was the greatest crustal addition event in Earth history. My focus is the Superior Province of Canada, where LAME occurred ca. 2.75 – 2.65 Ga. Mantle plumes impinged on the Abitibi subprovince, where ~ 16 km regional thickness of tonalite-trondhjemite-granodiorite (TTG) melt was produced. Granites (sensu stricto) were the last magmatic phase of LAME, with a Superior-wide regional thickness of ~ 1 – 3 km. Assuming a crustal source for both TTG and granites, I use 1-D thermal models to investigate the origin of TTG in the Abitibi subprovince and that of late granites in the Superior Province. Melting curves appropriate to the source of TTG and granites are used to determine the thickness of melt produced in the models. I show that the incorporation of upward melt transfer into a standard model of lower crustal melting may increase the amount of predicted melt by ~ 1/(1-f), where f denotes the fraction of melt that is on average being extracted from the source rocks. Partitioning of heat producing elements between melt and restite reduces the amount of melt produced, but the effect is secondary compared to the increase in melt production through upward melt transfer. For the Abitibi subprovince, I show that the emplacement of a single plume coupled with the emplacement of a 12-km-thick greenstone cover can generate a maximum of ~ 9-km-thickness of TTG melt. However, the emplacement of a series of plumes, each coupled with the emplacement of a 3-km-thick greenstone cover and a 10-km-thick sill results in ~ 20-km-thickness of TTG melt. My model incorporates delamination of restitic eclogite. Finally, I show that late granites in the Superior Province may have resulted from thickening of a crust that had been “pre-heated” during earlier arc activity and that prolonged granitic magmatism observed in some areas of the Superior Province may be explained by late underthrusting of fertile source rocks into deeper and hotter regions of the crust.
10

The nature and origin of Western Australian tourmaline nodules ; a petrologic, geochemical and isotopic study

Shewfelt, Debbie Amy 23 January 2006
The origin of tourmaline nodules, bizarre spherical to irregular textures documented worldwide, remains a geologic mystery. Although previously described by numerous researchers, the physical and chemical parameters that govern their formation have yet to be resolved. Commonly containing tourmaline, quartz, and occasionally feldspar, nodules are surrounded by a halo of leucocratic host rock, and are typically eight to ten centimeters in diameter. Tourmaline nodules of the present study are contained within the Paleoproterozoic Scrubber Granite of the southern Gascoyne Complex in Western Australia. </p> <p>This study integrated field observations, nodule petrography, tourmaline crystal chemistry, tourmaline fluid inclusion analyses, whole rock chemistry of nodule cores, leucocratic halo zones and host granite zones, stable and radiogenic isotope signatures of tourmaline separates as well as comparisons with other tourmaline nodule studies to propose the most scientifically sound theory for the formation of tourmaline nodules in the Scrubber Granite. </p> Numerous nodule morphologies, including spherical and C-shaped nodules, along with other features such as tube-like nodules and tourmaline veins occur in massive, porphyritic, foliated and sheared phases of the Scrubber Granite. Microscopically, tourmaline displays prismatic, sub-rounded and massive textures. Microthermometric studies completed on tourmaline fluid inclusions revealed that the nodule-forming fluid contained 14 to 15 weight percent NaCl + CaCl2. Based on stable isotope studies and homogenization temperatures, fluid temperatures were constrained between 450 and 700¢ªC. The ¥ä18O and ¥äD concentrations of the nodule-forming fluid at this temperature range plot above the typical magmatic water field. Epsilon Nd values indicate that the tourmaline nodules of the Scrubber Granite may have been disturbed by a later metamorphic event.</p>Tourmaline nodules of the Scrubber Granite are herein proposed to have formed from the exsolution and rise of buoyant pockets or bubbles of volatile fluid derived from the crystallizing Scrubber Granite magma.

Page generated in 0.039 seconds