• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 16
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 162
  • 34
  • 26
  • 24
  • 23
  • 21
  • 20
  • 20
  • 18
  • 18
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Analysis of temporal and spatial variations in water storage by means of gravimetric and hydrologic methods in the region around the South African gravimetric observation station

Mahed, Gaathier January 2013 (has links)
This work examines the use of gravity data and its application to subsurface water reservoirs in the immediate vicinity of the South African Geodynamic Observatory, Sutherland (SAGOS), situated in a semi-arid region of the Karoo region of South Africa, and underlain by the Karoo sedimentary rocks intruded by dolerite dykes and sills. SAGOS houses the only supergravity metre (SG) in Africa, and this thesis sets out to test its use in monitoring groundwater dynamics using hydrological and gravity data. The main aim of this work is the application of the SG data, in conjunction with hydrological data, to better understand episodic recharge of subsurface reservoirs. The importance of water as a resource, globally and specifically the Karoo, is reviewed in conjunction with supply and demand of water. This is to contextualise the socio-economic, technical as well as policy issues related to water resource management. Applicable technologies for water resource management and efficient water use are highlighted and the application of gravity to hydrology is introduced, including satellite as well as ground based tools. In addition, arid zone hydrology as well as recharge and its mechanisms are analysed in order to better understand these processes when examined from gravity measurements. Issues related to understanding flow within the vadose zone as well as in secondary aquifers are examined, and gravity residuals and subsurface hydrology are highlighted. Thereafter, a conceptual groundwater flow modelof the study area is developed using multiple tools. First, the geology around SAGOS was mapped using SPOT 5 imagery and then ground truthed. Second, stable isotopes and water chemistry analysis was undertaken on water samples from selected boreholes. The results allude to preferential flow acting as the main mechanism for groundwater recharge. Follow-up pump-tests illustrate that fracture connectivity is greatest at close proximity to the dyke. Soil mapping, using aerial photography was also undertaken. Duplex soils, enriched with clay at depth, dominate the study area. Using in-situ infiltration tests, it is shown that the alluvium, which lines the river beds, has a higher hydraulic conductivity than the other soils, confirming that these streams act as preferential conduits for subsurface recharge. Precipitation events were correlated against gravity residuals at 4 wells, over different time periods. The results are examined using time series analyses. Gravity residuals from well SA BK07, over a period of 24 hours after the rainfall event, delineate instances of negative correlations, as well as strong positive correlations (of up to 0.9). On the whole however, correlations between gravity and groundwater at SA BK07 are variable and weak, and in conjunction with water level measurements and water chemistry, the data suggest that this well is located in a dynamic conduit (throughflow) and not in a permanent groundwater reservoir. By contrast, other wells show strong positive correlations between gravity residuals and water levels following episodic recharge events for a later time series. Correlations between the water levels and gravity residuals in wells SA BK04, SA BK05 and SA BK 01 are in excess of 0.7 for specific rainfall events. In summary, the results suggests that gravity is an excellent tool for measuring episodic groundwater recharge within the immediate vicinity of the SAGOS. This implies that gravity can aid in monitoring groundwater losses/gains in arid and semi-arid areas. Recommendations for future work are highlighted at the end; these include the possible use of hydrological modelling of reservoirs at various scales and then comparing these results to the SG as well as GOCE and GRACE satellites data, and then improving numerical modelling of the groundwater dynamics for sites like Sutherland and the surrounding arid Karoo region, where sparse water shortages, and potential pollution related to fracking for shale-gas, are likely to compete with established water needs for farming and human consumption. It is also suggested that the gravity modelling be examined to better understand site specific scenarios and thus aid in improving the processing of the gravity signal.
112

The geology of the Witteberg group, Cape supergroup, with specific focus on the Perdepoort member as a potential silica source

Olivier, Wernich Corné January 2010 (has links)
Selected outcrops of the Upper Devonian to Lower Carboniferous, Witteberg Group, Cape Supergroup were mineralogically and structurally analyzed. The study area is located approximately 30km northwest of Kirkwood and 10km south of Darlington Dam, Eastern Cape, South Africa. Strata predominantly consist of arenaceous Witpoort Formation, which includes the Perdepoort, and Rooirand Members. The Perdepoort Member is a thinly bedded quartzite also known as the "white streak". The Rooirand Member quartzite is a highly iron stained red-brown quartzite. The dark-grey, pyritic rich shales of the Kweekvlei Formation overlie the Witpoort Formation in the southern half of the study site. These shales are highly deformed and display closely spaced thrust faults and close folds. The study area encapsulates a range of folding from tight to open folds. Faulting consists of low angle north verging thrust fault, south verging back thrusts, south and north dipping normal faults, and strike-slip faults. Closely spaced, fore-land verging thrusts faults predominate over hinterland verging back thrusts. Normal faulting post-dates thrust faulting and utilized weaknesses in axial planar cleavage and in certain instances existing thrust fault planes. Strike-slip faulting post-dates thrusting and has in places reactivated pre-existing thrust fault planes. Macro scale folding includes overturned synclines and large anticlines which have been eroded, exposing older strata. Fold axes plunge at low to moderate angles west-southwest. This correlates with tension gashes which indicate north westward directed forces. Eastward directed forces are confirmed by the presence of tension gashes and strike-slip movement. The local geology displays north westward directed compression followed by strike-slip movement. Normal faulting post-dates all other structures and is associated with the Mesozoic break-up of Gondwana. The Perdepoort Member was sampled along strike, at different outcrop latitudes. Seven samples were selected for scanning electron microscope analysis. Samples are composed almost entirely of quartz; accessories include, biotite, muscovite, sericite, baryte, and apatite. Epigenetic hematite is present along cracks within certain samples Epigenetic hematite occur along cracks with oxides and phosphates in the form of rutile, apatite and monazite present in a number of samples. When compared to other silica extraction operations the Perdepoort Member appears viable for explotation. However, for the solar cell industry the purity of this horizon is clearly far below that required for industy.
113

Sedimentological and geochemical investigations on borehole cores of the Lower Ecca Group black shales, for their gas potential : Karoo basin, South Africa

Chere, Naledi January 2015 (has links)
In the recent years, the shale gas discourse has become central to discussions about future energy supply in South Africa. In particular, the Permian black shales of the Lower Ecca Group formations in the Karoo Basin are considered potential source rocks for shale gas. The research presented in this thesis advances the understanding of the shale gas potential of mainly the Prince Albert, Whitehill and Tierberg/Collingham Formations. These shale sequences were sampled from eight deep boreholes spread across the main Karoo Basin and geochemically analysed at the GFZ - Helmholtz Centre Potsdam, Germany. Three key questions guided the study, these are: (i) what is the lithology of the sequence; (ii) where in the basin do the shale sequences attain maximum thickness at optimum depth i.e. beneath 1000-1500m; and (iii) and their shale characteristics. To evaluate these, borehole core logging, petrology and organic geochemistry were used extensively. Petrology involved the use of thin section, scanned electron and transmission electron microscopy for mineralogy as well as the identification of sedimentary features, organic matter and nano-scale porosity. These were coupled with standard organic geochemistry techniques such as Rock Eval. analysis, open pyrolysis gas chromatography and thermovaporisation to quantify the free gas, total organic carbon (TOC), present-day gas generative potential and kerogen type. The results show that the Whitehill Formation, away from the CFB and not intruded by dolerite, has the most potential for shale gas. Microscopic studies of this pyritic black shale reveal the occurrence of porous amorphous matter, indicating thermal maturity within the gas generation zone (i.e. > 1.1 percent Ro, 120ºC). The TOC content is consistently high within the Whitehill (exceeding industry requirement of 2 percent), attaining maximum of 7.3 percent. The highest yields of free and desorbed gas, especially methane, were emitted within this formation (S1 and nC1 peaks); mostly within its dolomitic units. In addition, dissolution porosity within dolomite units of the Whitehill Formation was identified as the predominant type of porosity. Thus, it is deduced that the dolomitic units of Whitehill Formation potentially contain the greatest volumes of free gas. HI values attain maximum of 25 mg HC/g TOC, whereas the OI values 26 mg CO2/g TOC. Such low HI and OI values are typically attributed to the dominance of Type IV kerogen, and consistent with overmaturity. Open pyrolysis (GC) show the main the chemical compound of the organic matter to be m-p-xylene, consistent with a mix of Type III, Type I/II and Type IV kerogen. Lithologically, the Whitehill Formation is composed of ~ 35 quartz, 13 percent feldspar, 26 percent illite and ~ 23 percent dolomite with variable amounts of pyrite. The dominance of quartz is directly proportional to the brittleness of the rock. Thus it can be deduced that the Whitehill Formation is relatively brittle and therefore fraccable. Burial trends indicate increasing depth (from ground level) to the top of the Whitehill Formation towards the south and south-eastern portion of the basin. It is in the southern region where thicknesses of this black shale exceeding 50m occur at depths more than 1500m; 1000m beneath fresh water aquifers. It therefore concluded that Whitehill Formation in the southern portion of Karoo Basin, but away from the thermo-tectonic overprint of the Cape Orogeny, is the most probable shale gas reservoir in South Africa.
114

Lithostratigraphy sedimentology and provenance of the Balfour Formation Beaufort Group in the Fort Beaufort Alice area Eastern Cape Province South Africa

Katemaunzanga, David January 2009 (has links)
A traverse through the Balfour Formation was chosen in the area around the towns of Fort Beaufort and Alice in the Eastern Cape Province. The main objectives of the study were to map the lithological variations within the Balfour Formation and to distinguish it from the underlying Middleton Formation and the overlying Katberg Formation. A combined desktop, field and laboratory approach was used in this study. Aerial photographs, satellite images and digital topographical maps formed the basis of the desktop work. After desktop mapping, a number of field traverses were measured through the study area. Sedimentary structures were observed, photomosaics were done, stratigraphic sections were measured and samples were collected for thin sectioning, heavy mineral separation and major, trace and REE analysis. Sedimentological development of the Balfour Formation has been outlined in relation to its provenance during the Late Permian. Lithological variation of the Balfour Formation is characterised by alternating sandstone-dominated and mudstone-dominated members. Arenaceous Oudeberg and Barberskrans Members are contain facies ranging from intraformational conglomerates (Gmm), massive sandstones (Sm & Ss), horizontally laminated sandstones (Sh), planar and trough cross-bedded sandstones (Sp, Sl & St), trough cross-laminated sandstones (Sr) and fine-grained sediments (Fm & Fl), whereas the mudstone dominated members are characterised by the facies Fm and Fl. Lithofacies together with bedforms observed in the Balfour Formation were used in architecturalelement analysis. Sandstone–rich members are dominated by channel fill elements such as LS, DA, SB, LA and CH, whereas the fine-grained component consists of mainly, FF iii element. The mudstone-dominated members contain FF, CS and LV elements, with LA, SB and CH in the subordinate sandstones. Petrography, geochemistry and palaeocurrent analysis indicated that the source of the Balfour Formation was to the south-east and the rocks had a transitional/dissected magmatic arc signature. This led to the postulation of the Karoo Basin to have developed in a retro-arc foreland basin where there was supralithospheric loading in the Cape Fold Belt due to a compressional regime initiated by the subduction of Palaeo-Pacific plate underneath the Gondwana plate. The tectonic loading was episodic with eight major paroxysms affecting the Karoo Supergroup. The Balfour Formation coincides with the fourth paroxysm, this paroxysm in turn consists of two third-order paroxysm that initiated the deposition of the Oudeberg and Barberskrans Members in low sinuosity streams. Each paroxysm was followed by a period of quiescence and these resulted in the deposition of the Daggaboersnek, Elandsberg and Palingkloof Members in meandering streams. Depositional environments were determined mainly from the sedimentary structures and 3D architecture of the rock types. Sandstone rich members were formed by seasonal and ephemeral high energy low sinuous streams whereas the fine-grained rich members were formed by ephemeral meandering streams. Palaeoclimates have been equated to the present temperate climates; they were semi-arid becoming arid towards the top of the Balfour Formation. This has been determined geochemistry (CIA), sedimentary structures and other rock properties like colour.
115

Lithostratigraphic correlation, mineralogy and geochemistry of the lower manganese orebody at the Kalagadi Manganese Mine in the Northern Cape Province of South Africa

Rasmeni, Sonwabile January 2012 (has links)
The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly  0.01wt% and  0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
116

Kontroles van goudmineralisasie by die Sheba-goudmyn, Barberton-distrik

Schouwstra, Robert Pieter 11 February 2014 (has links)
M.Sc. (Geology) / The Main Reef Complex (MRC) section is developed in the Zwartkoppie and Sheba Formations of the Onverwacht and Fig Tree Group respectively. The section is represented by three shear zones, associated with a prominent anticlinal structure, locally known as the Birthday No.2 anticline. This tight isoclinal structure is marked by a chert unit, with a core of green quartz-carbonate schist, and is overlain and surrounded by greywackes and shales of the Sheba Formation. At depth the main mineralized fracture occurs to the south of, and parallel to the Birthday No.2 chert bar. Above the crest of the anticlinal structure gold mineralization is associated with three shear zones (which transgress the bedding of the greywackes and shales) known as the No .. I, No. 2 and No. 3 Fractures. Pyrite and arsenopyrite are the main ore minerals, with minor amounts of chalcopyrite, sphalerite, tetrahedrite and pyrrhotite. Pyrite mineralization is ubiquitously developed along the shear zones, while arsenopyrite mineralization is restricted to certain areas. Assay data of the greywackes and shales show that there is a correlation between gold contents and the abundance of arsenopyrite. Gold has been observed in association with all the sulphide minerals present, and as inclusions within pyrite and arsenopyrite. Electron microprobe analyses have revealed significant levels of gold in arsenopyrite, probably as submicroscopic inclusions.
117

Styles of hydrothermal alteration in archaean rocks of the Northern Kaapvaal craton, South Africa, with implications for gold mineralization

Sieber, Thomas 13 February 2014 (has links)
Ph.D. (Geology) / Shear zone controlled hydrothermal alteration zones in the northern Kaapvaal craton (NKC) are developed in host rocks of vastly different chemical composition and metamorphic grade. Some carry appreciable Au and base metals and some are barren. Alteration zones in three different distinctive crustal zones were examined in detail to determine the controls of these two types of alteration. 1. The Matok Complex is situated in the southern marginal zone (SMZ) of the Limpopo Belt (LB), close to the zone of rehydration. Two major stages of hydrothermal alteration could be identified in local shear zones, a pervasive propylitization and a subsequent vein controlled quartzalbite alteration. The two-stage alteration occurred sometimes between the emplacement of the Matok Complex (2670 Ma) and the intrusion of unaltered mafic dykes (1900 Ma). Calculated isotopic compositions of the hydrothermal fluids indicate that magmatic ± meteoric waters as well as juvenile C02 were responsible for the establishment of the alteration zones. The fluids most probably were late magmatic fluids associated with the Matok magmatism. The propylitic alteration was accompanied by introduction of small amounts of CU + Au and represents an alteration type identical to that developed in porphyry copper deposits. The subsequent quartz-albite alteration was caused by extremely saline fluids which depleted the rocks of all the major and trace elements with exception of Si, Al, Na and Zr. 2. This chemical alteration pattern' contrasts with those developed in two alteration zones associated with economic gold mineralization in greenstone belts of the NKC (Sutherland and Pietersburg belts). At the Birthday and Eersteling gold mines, a biotite-calcite-quartz alteration is developed. The chemical pattern of the alteration is...
118

Transformation of tonalitic gneiss into potassic garnet-sillimanite gneiss in a deep crustal shear zone in the Limpopo belt

Mokgatlha, Kgomotso P.B. 17 November 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
119

A critical appraisal of regional geotechnical mapping in South Africa

Kleinhans, Ilse 12 August 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Engineering and Environmental Geology))--University of Pretoria, 2006. / Geology / unrestricted
120

Statistical and wavelet analysis of density and magnetic susceptibility data from the Bushveld Complex, South Africa

Sepato, Obone January 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2015 / The Bushveld Complex (BC) is the largest known layered intrusion. This suite of rock crop out in northern South Africa to form the Western, Eastern and Northern Limbs. Most research carried out focuses on the mineralized horizons in the Rustenburg Layered Suite (RLS) of the BC. This study presents a large database of wireline geophysical logs across a substantive part of the stratigraphy of the RLS. These consist of density and magnetic susceptibility datasets sampled at 1 cm. The major lithologies of the RLS intersected in the boreholes presented are gabbro, gabbronorite, norite and anorthosite whose density histograms reveal that they are predominantly normally distributed, with density averages of 2.86-2.91 g/cm3. The lithologies consist of mainly two minerals, pyroxene and plagioclase. In general, the average density increases with an increase in pyroxene. The distribution of the magnetic susceptibility for these lithologies has a large variation from SI to 13.2 SI, which is typical of layered intrusions. Susceptibility distributions are also multi-modal, asymmetric and not normally distributed, which makes the average magnetic susceptibilities less representative of the lithologies. Cross-correlation plots between density and magnetic susceptibility for several boreholes show that the above-mentioned lithologies form clusters (circular to elliptical), which typically overlap. This has been further investigated using k-means classification, to automatically detect these clusters in the cross-correlation plots and to compare these with those created by lithologies. The comparison shows some degree of correlation, implying that physical properties can be used to identify lithologies. This is particularly true for the Eastern Limb. However the classification has not been effective in all of the boreholes and often becomes complicated and an inaccurate representation of lithology log. This occurs in boreholes in which there is an overlap in the physical properties of the abovementioned lithologies. Analysis on the density and magnetic susceptibility data has also been carried out using wavelet analysis at individual locations across the BC. This has revealed multi-scale cyclicity in all of the boreholes studied, which is attributed to subtle layering created by variations in modal proportions between plagioclase and pyroxene. In addition to this, since layering is generally ubiquitous across layered intrusions, this cyclicity can be assumed to be present across the entire BC. This technique may become increasingly important should the cyclicity in physical property data correlate with reversals in fractionation trends since this may suggest zones of magma addition, whose thickness or III volumes can be quantified using wavelet analysis. This could be an important contribution since the current perspective on magma addition in the RLS is that four major additions have formed this 8 km thick suite of rocks, as opposed to smaller periodic influxes of magma. Wavelet-based semblance analysis has been used to compare the wavelengths at which the cyclicity occurs across boreholes. A comparison of wavelengths of this cyclicity shows that boreholes in the northern Western Limb show positive correlation in the density data at wavelengths >160 m and 20-60 m, while those further south show correlations at wavelengths of 120-200 m and 60-80 m. Boreholes of the Eastern Limb show positive correlation in the density and magnetic susceptibility data at wavelengths of 10-20 m, 20-30 m and 5m. These positive correlations across boreholes in density and magnetic susceptibility respectively, may imply that cyclicity may be produced by a chamber-wide process for several kilometres of the BC.

Page generated in 0.1019 seconds