Spelling suggestions: "subject:"geometrical stability"" "subject:"eometrical stability""
1 |
Continuidade de atratores globais: o uso de corretores para a obtenção de melhores taxas de convergência / Continuity of global attractors: the use of correctors to obtain better convergence ratesCardoso, Cesar Augusto Esteves das Neves 05 June 2017 (has links)
Neste trabalho estudamos a continuidade da dinâmica assintótica relativamente a perturbações e, em particular, exploramos a obtenção de melhorias para as taxas de convergência de atratores globais através da introdução de fatores de correção, inspirados pelos resultados da teoria de homogeneização e nos trabalhos de (BABIN; VISHIK, 1992) e (CARVALHO; CHOLEWA, 2011), e através da introdução de mecanismos que melhoram a transferência da taxa de convergência de semigrupos para a taxa de convergência de atratores, inspirados pelos trabalhos (SANTAMARÍA, 2013) e (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). A proposta inicial está centrada na obtenção de melhores taxas de convergência de atratores globais através da obtenção de equiatração e da melhoria da taxa de convergência dos semigrupos. Para isto, buscamos melhorar a taxa de convergência do resolvente dos operadores setoriais envolvidos, por meio de uma perturbação singular do resolvente limite que ainda gere uma família de operadores setoriais com resolventes que aproximam o resolvente do problema limite e aproximam melhor os resolventes das perturbações iniciais. Feito isto, obtemos uma melhora imediata de convergência dos semigrupos lineares, depois dos não lineares (através da fórmula da variação das constantes). Motivados pelos resultados de (SANTAMARÍA, 2013), que oferecem uma menor perda na transferência das taxas de convergência dos semigrupos para as taxas de convergência dos atratores, buscamos melhor compreender a propriedade Lipschitz Shadowing, que é responsável direta pela obtenção da taxa de convergência dos atratores diretamente da taxa de convergência dos semigrupos. Isto nos levou a descobrir que podemos obter as propriedade Lipschitz Shadowing e estabilidade estrutural para perturbações Lipschitz de semigrupos Morse-Smale. / Here we compare the continuity of the asymptotic dynamics with respect to perturbations and, in particular, we explored to obtain improvement of rates of convergence of the global attractor through the introduction of correction factors, inspired by the results of homogenization theory and work of (BABIN; VISHIK, 1992) and (CARVALHO; CHOLEWA, 2011), and the introduction of mechanisms that improve the transference of the convergence rate of semigroups to the convergence rate of attractors, inspired by the work of (SANTAMARÍA, 2013) and (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). The initial proposal is focused on achieving best rates of convergence of the global attractors by obtaining equi-atraction and improving the convergence rate of semigroups. For this, we seek to improve the rate of convergence of the resolvents of sectorial operators, through a singular perturbation of the resolvent associated with the limit problem and generate a new family of sectorial operators whose resolvents both approximate the resolvent of the limit problem as they were closer to the resolvents the initial perturbation. Having done this, we obtain an immediate improvement of convergence of linear semigroups, after the non-linear (using the variation of constants formula). Motivated by the results of (SANTAMARÍA, 2013), which offer an improvement in obtaining convergence rates, we seek to study property better Lipschitz Shadowing, which is basically responsible for obtaining the distance of the attractors directly from the convergence rate of the semigroups. This has led us to discover that we can both preserve the Lipschitz Shadowing property under Lipschitz perturbations of Morse-Smale semigroups, and The geometric stability of the attractors.
|
2 |
Continuidade de atratores globais: o uso de corretores para a obtenção de melhores taxas de convergência / Continuity of global attractors: the use of correctors to obtain better convergence ratesCesar Augusto Esteves das Neves Cardoso 05 June 2017 (has links)
Neste trabalho estudamos a continuidade da dinâmica assintótica relativamente a perturbações e, em particular, exploramos a obtenção de melhorias para as taxas de convergência de atratores globais através da introdução de fatores de correção, inspirados pelos resultados da teoria de homogeneização e nos trabalhos de (BABIN; VISHIK, 1992) e (CARVALHO; CHOLEWA, 2011), e através da introdução de mecanismos que melhoram a transferência da taxa de convergência de semigrupos para a taxa de convergência de atratores, inspirados pelos trabalhos (SANTAMARÍA, 2013) e (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). A proposta inicial está centrada na obtenção de melhores taxas de convergência de atratores globais através da obtenção de equiatração e da melhoria da taxa de convergência dos semigrupos. Para isto, buscamos melhorar a taxa de convergência do resolvente dos operadores setoriais envolvidos, por meio de uma perturbação singular do resolvente limite que ainda gere uma família de operadores setoriais com resolventes que aproximam o resolvente do problema limite e aproximam melhor os resolventes das perturbações iniciais. Feito isto, obtemos uma melhora imediata de convergência dos semigrupos lineares, depois dos não lineares (através da fórmula da variação das constantes). Motivados pelos resultados de (SANTAMARÍA, 2013), que oferecem uma menor perda na transferência das taxas de convergência dos semigrupos para as taxas de convergência dos atratores, buscamos melhor compreender a propriedade Lipschitz Shadowing, que é responsável direta pela obtenção da taxa de convergência dos atratores diretamente da taxa de convergência dos semigrupos. Isto nos levou a descobrir que podemos obter as propriedade Lipschitz Shadowing e estabilidade estrutural para perturbações Lipschitz de semigrupos Morse-Smale. / Here we compare the continuity of the asymptotic dynamics with respect to perturbations and, in particular, we explored to obtain improvement of rates of convergence of the global attractor through the introduction of correction factors, inspired by the results of homogenization theory and work of (BABIN; VISHIK, 1992) and (CARVALHO; CHOLEWA, 2011), and the introduction of mechanisms that improve the transference of the convergence rate of semigroups to the convergence rate of attractors, inspired by the work of (SANTAMARÍA, 2013) and (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). The initial proposal is focused on achieving best rates of convergence of the global attractors by obtaining equi-atraction and improving the convergence rate of semigroups. For this, we seek to improve the rate of convergence of the resolvents of sectorial operators, through a singular perturbation of the resolvent associated with the limit problem and generate a new family of sectorial operators whose resolvents both approximate the resolvent of the limit problem as they were closer to the resolvents the initial perturbation. Having done this, we obtain an immediate improvement of convergence of linear semigroups, after the non-linear (using the variation of constants formula). Motivated by the results of (SANTAMARÍA, 2013), which offer an improvement in obtaining convergence rates, we seek to study property better Lipschitz Shadowing, which is basically responsible for obtaining the distance of the attractors directly from the convergence rate of the semigroups. This has led us to discover that we can both preserve the Lipschitz Shadowing property under Lipschitz perturbations of Morse-Smale semigroups, and The geometric stability of the attractors.
|
3 |
Selective laser sintering and post-processing of fully ferrous componentsVallabhajosyula, Phani Charana Devi 08 June 2011 (has links)
Indirect additive processing of ferrous metals offers the potential to freeform fabricate parts with good surface finish and minimal dimensional variation from the computer solid model. The approach described here is to mix a ferrous powder with a transient binder followed by selective laser sintering (SLS) in a commercial polymer machine to create a “green” part. This part is post-processed to burn off the transient binder and to infiltrate the porous structure with a lower melting point metal/alloy. Commercially available SLSed ferrous components contain copper-based infiltrant in a ferrous preform. The choice of copper alloy infiltrant has led to inferior mechanical properties of these components limiting their use in many non-injection-molding structural applications, particularly at elevated temperature. In the present work, an attempt has been made to replace the copper-based infiltrant considering cast iron as a potential infiltrant because of its fluidity, hardness and stability at comparatively high temperature. A critical consideration is loss of part structural integrity by over-melting after infiltration as chemical diffusion of alloying elements, principally carbon, occurs resulting in a decrease in the melting temperature of tool steel preform. A predictive model was developed which defines the degree of success for infiltration based on final part geometry and depending on the relative density of the preform and infiltration temperature. The processing regime is defined as a function of controllable process parameters. An experimental program was undertaken using commercially available LaserForm[superscript tm] A6 tool steel that was infiltrated with ASTM A532 white cast iron. Guided by Ashby densification maps, pre-sintering of the A6 tool steel SLS part was performed to increase the part initial relative density prior to infiltration. The final infiltrated parts were analyzed for geometry, microstructure and hardness. The model may be extended to other ferrous powder and infiltrant compositions in an effort to optimize the properties and utility of the final infiltrated part. / text
|
Page generated in 0.0589 seconds