• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scale Effects in Crystal Plasticity

Padubidri Janardhanachar, Guruprasad 2010 May 1900 (has links)
The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.
2

Micro-deformation and texture in engineering materials

Kiwanuka, Robert January 2013 (has links)
This DPhil project is set in the context of single crystal elasticity-plasticity finite element modelling. Its core objective was to develop and implement a methodology for predicting the evolution of texture in single and dual-phase material systems. This core objective has been successfully achieved. Modelling texture evolution entails essentially modelling large deformations (as accurately as possible) and taking account of the deformation mechanisms that cause texture to change. The most important deformation mechanisms are slip and twinning. Slip has been modelled in this project and care has been taken to explore conditions where it is the dominant deformation mechanism for the materials studied. Modelling slip demands that one also models dislocations since slip is assumed to occur by the movement of dislocations. In this project a model for geometrically necessary dislocations has been developed and validated against experimental measurements. A texture homogenisation technique which relies on interpretation of EBSD data in order to allocate orientation frequencies based on representative area fractions has been developed. This has been coupled with a polycrystal plasticity RVE framework allowing for arbitrarily sized RVEs and corresponding allocation of crystallographic orientation. This has enabled input of experimentally measured initial textures into the CPFE model allowing for comparison of predictions against measured post-deformation textures, with good agreement obtained. The effect of texture on polycrystal physical properties has also been studied. It has been confirmed that texture indeed has a significant role in determining the average physical properties of a polycrystal. The thesis contributes to the following areas of micro-mechanics materials research: (i) 3D small deformation crystal plasticity finite element (CPFE) modelling, (ii) geometrically necessary dislocation modelling, (iii) 3D large deformation CPFE modelling, (iv) texture homogenisation methods, (v) single and dual phase texture evolution modelling, (vi) prediction of polycrystal physical properties, (vii) systematic calibration of the power law for slip based on experimental data, and (viii) texture analysis software development (pole figures and Kearns factors).
3

Enhanced gradient crystal-plasticity study of size effects in B.C.C. metal

Demiral, Murat January 2012 (has links)
Owing to continuous miniaturization, many modern high-technology applications such as medical and optical devices, thermal barrier coatings, electronics, micro- and nano-electro mechanical systems (MEMS and NEMS), gems industry and semiconductors increasingly use components with sizes down to a few micrometers and even smaller. Understanding their deformation mechanisms and assessing their mechanical performance help to achieve new insights or design new material systems with superior properties through controlled microstructure at the appropriate scales. However, a fundamental understanding of mechanical response in surface-dominated structures, different than their bulk behaviours, is still elusive. In this thesis, the size effect in a single-crystal Ti alloy (Ti15V3Cr3Al3Sn) is investigated. To achieve this, nanoindentation and micropillar (with a square cross-section) compression tests were carried out in collaboration with Swiss Federal Laboratories for Materials Testing and Research (EMPA), Switzerland. Three-dimensional finite element models of compression and indentation with an implicit time-integration scheme incorporating a strain-gradient crystal-plasticity (SGCP) theory were developed to accurately represent deformation of the studied body-centered cubic metallic material. An appropriate hardening model was implemented to account for strain-hardening of the active slip systems, determined experimentally. The optimized set of parameters characterizing the deformation behaviour of Ti alloy was obtained based on a direct comparison of simulations and the experiments. An enhanced model based on the SGCP theory (EMSGCP), accounting for an initial microstructure of samples in terms of different types of dislocations (statistically stored and geometrically necessary dislocations), was suggested and used in the numerical analysis. This meso-scale continuum theory bridges the gap between the discrete-dislocation dynamics theory, where simulations are performed at strain rates several orders of magnitude higher than those in experiments, and the classical continuum-plasticity theory, which cannot explain the dependence of mechanical response on a specimen s size since there is no length scale in its constitutive description. A case study was performed using a cylindrical pillar to examine, on the one hand, accuracy of the proposed EMSGCP theory and, on the other hand, its universality for different pillar geometries. An extensive numerical study of the size effect in micron-size pillars was also implemented. On the other hand, an anisotropic character of surface topographies around indents along different crystallographic orientations of single crystals obtained in numerical simulations was compared to experimental findings. The size effect in nano-indentation was studied numerically. The differences in the observed hardness values for various indenter types were investigated using the developed EMSGCP theory.
4

Mesures en trois dimensions des distorsions cristallines par imagerie en diffraction de Bragg : application aux cristaux de glace / 3D resolved distortion measurements by Bragg diffraction imaging : application to ice crystals

Kluender, Rafael 29 September 2011 (has links)
La déformation visco-plastique de la glace est fortement anisotrope, le plan de glissement préferé étant la plan de base. Le fait que dans un polycristal chaque grain possède sa propre direction de déformation produit des incompatibilités et un champ de contrainte complexe. La déformation à été étudiée expérimentellement en mésurant la dis- tortion des plans cristallins de mono- et polycristaux de glace artificielle. Les expériences ont été réalisées à l'aide d'un faisceau synchrotron. Une nouvelle procédure éxperimental, basée sur les méthodes de l'imagerie en diffraction de Bragg, comme lumière blanche, im- agerie sur la courbe de diffraction et topographie laminaire et ponctuelle, a été dévéloppée. Les désorientations angulaires, les largeurs à mi-hauteur et les intensités intégrées ont été mésurées dans les trois dimensions spatiales de l'échantillon et avec une résolution de 50× 50 × 50µm3. Les algorithmes d'analyse de données ont été écrits pour extraire des données des résultats quantitatifs, et pour calculer les neuf composantes du tenseur de courbure ainsi que la distortion entière des plans cristallins. Les résultats ont permis d'observer les premières étappes de la déformation de la glace. Par example la polygonisation d'un grain à été observée. / The viscoplastic deformation of ice is strongly anisotropic. The preferred glide system is on the basal plane. In a polycrystal each grain exhibits its own deformation direction. As a result the deformation of polycrystalline ice is associated with strain in- compatibilities, especially at the grain boundaries and the triple junction. The deforma- tion process was experimentally investigated by measuring crystal lattice distortions of single- and polycrystalline, artificially grown ice crystals. The experiments were benefic- ing from a synchrotron X-ray beam. A new experimental method, based on Bragg diffrac- tion imaging (X-ray topography) methods, as white beam X-ray diffraction topography, rocking curve imaging, section- and pinhole X-ray topography was used. Angular mis- orientations, full-width-half-maxima and integrated Bragg diffracted intensities have been measured along the three spatial dimensions of the sample and with a spatial resolution of around 50µm × 50µm × 50µm. Data analysis algorithms were written in order to extract quantitative results from the data and to calculate all nine components of the curvature ten- sor, as well as the entire lattice distortion in the sample. The results give an insight into the early stages of plastic deformation of ice, i.e. the polygonisation of a grain was observed.

Page generated in 0.1444 seconds