• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 18
  • 17
  • 10
  • 9
  • 1
  • 1
  • Tagged with
  • 106
  • 28
  • 26
  • 24
  • 21
  • 21
  • 18
  • 18
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass

Ulugöl, H., Kul, A., Yildirim, Gurkan, Şahmaran, M., Aldemir, A., Figueira, D., Ashour, Ashraf 23 September 2020 (has links)
Yes / Geopolymers are mostly produced with main-stream precursors such as fly ash and slag. These precursors are successfully used and competitively demanded by the cement industry. Development of geopolymers from alternative precursors is appealing. The main aim of this work is the development of geopolymers with construction and demolition waste-based precursors including masonry units (red clay brick, roof tile, hollow brick) and glass. Different curing temperatures (50, 65, 75, 85, 95, 105, 115, 125 oC), curing periods (24, 48, 72 h), and Na concentrations (10, 12, 15%) of alkaline activator (NaOH) were employed. Compressive strength testing and microstructural investigations were performed including X-ray diffraction, thermogravimetry and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Results showed that depending on the type of precursor (hollow brick), curing temperature/period (115 oC/24 h) and concentration of alkaline activator (12%), it is possible to obtain compressive strength results more than 45 MPa. Hollow brick is the most successful precursor resulting in higher compressive strength results thanks to a more compact microstructure. The strength performance of red clay brick and roof tile is similar. The compressive strength results of geopolymers with glass precursor are lower, most probably due to significantly coarser particles of glass used. The main reaction products of red clay brick-, roof tile- and hollow brick-based geopolymers are sodium aluminosilicate hydrate (N-A-S-H) gels with zeolite-like structures while they are sodium silicate gels in the case of glass-based geopolymers. Our findings showed that CDW-based materials can be used successfully in producing geopolymers. Current research is believed to help raise awareness in novel routes for the effective utilization of such wastes which are realistically troublesome and attract further research on the utilization of CDW-based materials in geopolymer production. / The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council (TUBITAK) of Turkey and British Council provided under projects: 117M447 and 218M102.
22

Development of Concrete Mixtures Based Entirely on Construction and Demolition Waste and Assessment of Parameters Influencing the Compressive Strength

Yildirim, Gurkan, Ozcelikci, E., Alhawat, Musab M., Ashour, Ashraf 22 March 2023 (has links)
Yes / Demolition and reconstruction of degrading structures alongside with the repetitive repair, maintenance, and renovation applications create significant amounts of construction and demolition waste (CDW), which needs proper tackling. The main emphasis of this study has therefore been placed on the development of concrete mixtures with components (i.e., aggregates and binder) coming entirely from CDW. As the binding phase, powdered CDW-based masonry units, concrete and glass were used collectively as precursors to obtain geopolymer binders, which were then incorporated with CDW-based fine and coarse concrete aggregates. Together with the entirely CDW-based concretes, designs were also proposed for companion mixtures with mainstream precursors (e.g., fly ash and slag) occupying some part of the CDW-based precursor combination. Sodium hydroxide (NaOH), sodium silicate (Na2SiO3) and calcium hydroxide (Ca[OH]2) were used at various concentrations and combinations as the alkaline activators. Several factors that have impact on the compressive strength results of concrete mixtures, such as mainstream precursor replacement rate, al-kaline molar concentrations, aggregate-to-binder ratios and curing conditions, were considered and these were also backed by the micro-structural analyses. Our results showed that through proper optimiza-tion of the design factors, it is possible to manufacture concrete mix-tures entirely out of CDW with compressive strength results able to reach up to 40 MPa under ambient curing. Current research is believed to be very likely to promote more innovative and up-to-date techniques to upcycle CDW, which are mostly downcycled through basic practices of road base/sub-base filling, encouraging further research and increas-ing the awareness in CDW issue.
23

Development of ambient-cured geopolymer mortars with construction and demolition waste-based materials

Yildirim, Gurkan, Ashour, Ashraf, Ozcelikci, E., Gunal, M.F., Ozel, B.F., Alhawat, Musab M. 22 September 2023 (has links)
Yes / Degrading infrastructure and applications of structural demolition create tremendous amounts of construction and demolition waste (CDW) all around the world. To address this issue in an effective way, recycling CDW in a most appropriate way has become a global concern in recent years. To this end, this study focused on the valorization of CDW-based materials such as tile, bricks, glass, and concrete in the development of geopolymer mortars. CDWs were first collected from demolition zone and then subjected to crushing-milling operations. To investigate the influence of slag (S) addition to the mixtures, 20% S substituted mixture designs were also made. Fine recycled concrete aggregates (FRCA) obtained from crushing and sieving of the waste concrete were used as the aggregate. A series of mixtures were designed using different proportions of three distinct alkali activators such as sodium hydroxide (NaOH), sodium silicate (Na2SiO3), and calcium hydroxide (CH; Ca(OH)2). To improve their applicability, the mixtures were left to cure at room temperature rather than the heat curing which is frequently applied in the literature. After 28 days ambient curing, the 100% CDW-based geopolymer mortar activated with three different activators reached a compressive strength of 31.6 MPa, whereas the 20% S substituted geopolymer mortar showed a 51.9 MPa compressive strength. While the geopolymer mortars activated with only NaOH exhibited poor performance, it was found that the use of Na2SiO3 and CH improved the mechanical performance. Main geopolymerization products were related to NASH (Sodium alumino-silicate hydrate), CASH (Calcium alumino-silicate hydrate), and C(N)ASH gel formations. Results demonstrated that mixed CDWs can be employed in the manufacturing geopolymers, making them potential alternatives to Portland cement (PC)-based systems by being eco-friendly, energy-efficient, and comparable in compressive strength. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894100.
24

Synthesis and Characterization of Geopolymers as Construction Materials

Acharya, Indra Prasad January 2014 (has links) (PDF)
Geopolymers are a relatively new class of materials that have many broad applications, including use as substitute for ordinary Portland cement (OPC), use in soil stabilisation, fire resistant panels, refractory cements, and inorganic adhesives. Geopolymers are an alternative binder to Portland cement in the manufacture of mortars and concrete, as its three-dimensional alumino silicate network develops excellent strength properties. Use of geopolymers in place of ordinary Portland cement is also favoured owing to the possible energy and carbon dioxide savings. Geopolymer is typically synthesized by alkali activation of pozzolanas at moderate temperatures (< 1000C). The focus of the thesis is synthesis and characterization of geopolymers as construction materials. In this context, the role of compositional factors, such as, pozzolana type (fly ash, kaolinite, metakaolinite, ground granulated blast furnace slag, red soil), alkali (sodium hydroxide is used in this study) activator concentration, Si/Al (Si= silicon, Al = aluminium) ratio of the pozzolana and environmental factors, namely, curing period and temperature are examined. Besides synthesizing geopolymers that could be an alternate to concrete as construction material, sand-sized aggregates were synthesized using geopolymer reactions. This was done as river sand is becoming scarcer commodity for use as construction material. Several compositional and environmental factors were varied in geopolymer synthesis in order to identify the optimum synthesis conditions that yield geopolymers with maximum compressive strength. Besides varying external (compositional and environmental) factors, the role of internal microstructure in influencing the compressive strength of the geopolymer was examined. Micro-structure examinations were made using X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) studies. The studies on compositional and environmental factors in geopolymer synthesis brought out several interesting results. The results firstly brought out that amongst the pozzolanas studied, ASTM class F fly ash is most suited for maximum compressive strength mobilization upon geopolymer reactions. Moderate temperature (75-1000C) was adequate to mobilize large compressive strengths. Room temperature curing needed more than 7 days before the pozzolana-NaOH paste began to develop strength. Curing period of 56 days was needed for the geopolymer to develop significant strength (19.6MPa). A similar range of compressive strength could be developed by the pozzolana-NaOH paste upon curing for 3 days at 1000C. Likewise curing the pozzolana-NaOH paste at temperatures > 1000C led to reduction in compressive strength from shrinkage and breakage of bonds. A caustic soda (NaOH) concentration of 10 M was adequate to develop maximum compressive strength of the geopolymer. Caustic soda concentrations in excess of 10 M did not result in further improvement of strength. The Si/Al ratio also contributes to strength mobilization. The Si/Al ratio of the geopolymer was enhanced by mixing commercially obtained silica gel with the pozzolana. Maximum strength mobilization was observed at Si/Al ratio = 2.45 corresponding to 6.5 % silica gel addition to the pozzolana (on dry mass basis). Comparing compressive strengths of geopolymers with varying silica gel contents, geopolymer specimens with least water content and largest dry density did not exhibit maximum compressive strength indicating that the physico-chemical (bond strength, micro-structure) played a pivotal role than physical parameters (dry density, water content) in dictating the strength of the geopolymer. MIP results showed that bulk of the porosity in fly ash geopolymer specimens is contributed by macro pores and air voids. Geopolymerization leads to bulk consumption of cenospheres in fly ash and forms polymerized matrix with network of large pores. After geopolymerization, all the main characteristic peaks of Al–Si minerals observed in fly ash persisted, suggesting that no new major crystalline phases were formed. Presence of small amount of inorganic contaminants in fly ash can drastically reduce the strength of the fly ash geopolymer. For example, 5-20 % presence of red soil reduces the strength of fly ash geopolymer by 16 to 59 %. Presence of unreacted clay coupled with less porous structure is responsible for the reduction in compressive strength of fly ash geopolymer subjected to red soil addition. MIP studies with geopolymers also revealed that there is good bearing between compressive strengths and maximum intruded volume (from MIP test) of geopolymers. For example, fly ash geopolymer specimen exhibits highest total intruded volume (0.3908 cc/g) and largest compressive strength of 29.5 MPa, while red soil geopolymer specimen exhibit least intruded volume (0.0416 cc/g) and lowest compressive strength (5.4 MPa). Further, analysis showed that specimens with larger airvoids+macropores volume had larger compressive strength, suggesting that geopolymers with more porous microstructure develop larger compressive strength. All geopolymer specimens exhibited tri-modal nature of pores i.e. macro-pore mode (entrance pore radius: 25-5000 nm), mesopore mode (entrance pore radius: 1.25 to 25 nm) and air void mode (entrance pore radius >5000 nm). The micro pores (entrance pore radius < 1.25 nm) do not contribute to porosity of the geopolymer specimens. Sand particles prepared from geopolymer reactions (FAPS or fly ash geopolymer sand) predominated in medium sized (2mm to 0.425 mm) sand particles. Their particle size distribution characteristics (uniformity coefficient and coefficient of curvature) classified them as poorly graded sand (SP). Dissolution, followed by polymerization reactions led to dense packing of the Si–O–Al–O– units that imparted specific gravity of 2.59 to FAPS particles which is comparable to that of river sand (2.61). Dissolution in strongly alkaline medium imparted strongly alkaline pH (12.5) to the FAPS particles. The river sand is characterized by much lower pH (7.9). Despite being characterized by rounded grains, the FAPS particles mobilized relatively high friction angle of (35.5o) than river sand (∅ = 28.9o). The river sand-mortar (RS-M) and fly ash geopolymer sand-mortar (FAPS-M) specimens developed similar 28-day compressive strengths, 11.6 to 12.2 MPa. Despite its higher water content, FAPS-mortar specimens developed similar compressive strength and initial tangent modulus (ITM) as river sand-mortar specimens. The FAPS-M specimen is more porous (larger intruded volume) with presence of larger fraction of coarser pores. Total porosity is majorly contributed by macro-pores (67.92%) in FAPS-M specimen in comparison to RS-M specimen (macro-pores = 33.1%). Mortar specimens prepared from FAPS and river sand exhibit similar pH of 12.36 and 12.4 respectively. FAPS-mortar specimens have lower TDS (1545 mg/L) than river sand-mortar specimens (TDS = 1889 mg/L). The RS-M and FAPS-M specimens exhibit leachable sodium levels of 0.001 g Na/g RS-M and 0.007 g Na/g-FAPS-M respectively in the water leach tests. The larger leachable sodium of FAPS-M specimen is attributed to residual sodium hydroxide persisting in the FAPS even after washing. The ultra-accelerated mortar bar test (UAMBT) shows that the percentage expansion of FAPS-M and RS-M specimens are comparable and range between 0.07 to 0.08 %.
25

An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar

Funke, Henrik L., Gelbrich, Sandra, Kroll, Lothar 13 October 2016 (has links) (PDF)
This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise between setting time and mechanical strengths of the AAB. With this sodium hydroxide concentration, the compressive and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa respectively after 14 days. As a result of the investigation of the acid resistance, the AAB-matrix showed a very high acid resistance in comparison to ordinary Portland cement concrete. In addition, the AAB had a high frost resistance, which had been validated by the capillary suction, internal damage and freeze thaw test with a relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 g/m2 after 28 freeze-thaw cycles (exposure class: XF3).
26

Soil reinforcement with geopolymer : A FEM study in the Old Town subway track adjacent to Söderströmsbron / Jordförstärkning med geopolymer : En FEM - studie i Gamla Stans tunnelbanespår i anslutning till Söderströmsbron

Mikha, Alexandra, Radouani, Gina January 2020 (has links)
Söderströmsbron is the bridge that leads the subway between Slussen and Gamla Stan in Stockholm, the capital of Sweden. It is one of the busiest routes in the entire SL traffic system. According to surveys, the ground behind one of the retaining walls in Gamla Stan has shown settlements and movements that have required Trafikförvaltning to annually fill up with 1m3 of macadam.To avoid disturbing the traffic in the area, an interference-free reinforcement method has been requested. A proposal to stabilize the soil is by injecting geopolymer, which is a two- component solution that protects against erosion and equalize ground levels. Geopolymer consist of two liquid substances, that expand in the combination with each other, forming an impervious barrier to water.This report addresses a finite element analysis in the Plaxis 2D program for the affected soil behind the support with geopolymer to determine if the reinforcement method can be applied as a long-term solution.The results from FE analyzes show that the injection of geopolymer is a more long-term solution for reduced settlements in the soil, but also for the movements of the structures. / Söderströmsbron leder tunnelbanan mellan Slussen och Gamla Stan i Stockholm. Det är en av de mest trafikerade sträckorna i hela SL:s trafiksystem. Jorden bakom landfästet i Gamla Stan har enligt undersökningar påvisat sättningar och rörelser vilket medfört att Trafikförvaltningen årligen behövt fylla på med 1m3 makadamballast.För att undvika att förhindra trafiken i området har en störningsfri förstärkningsmetod efterfrågats. Ett förslag för att stabilisera marken är injektering av geopolymer, en tvåkomponent-lösning som skyddar mot erosion och utjämnar marknivåer. Geopolymer består av två flytande ämnen som i kontakt med varandra expanderar och bildar en ogenomtränglig barriär mot vatten.Denna rapport behandlar en finita element-analys i programmet Plaxis 2D beträffande den drabbade jorden bakom stödet samt en förstärkning med geopolymer för att avgöra om förstärkningsmetoden kan tillämpas som en långsiktig lösning.Resultatet från FE-analysen visar att injektering av geopolymer är en mer långsiktig lösning för minskade sättningar i jorden, men även för konstruktionernas rörelser.
27

Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymer

Zhao, Jitong 29 February 2024 (has links)
Carbon concrete composites (C³) hold promise as a material class for constructing lightweight, durable, and sustainable structures. State-of-the-art carbon fiber-reinforced polymer (CFRP) reinforcement comprises infinite multifilament bundles embedded in a polymeric matrix, en-suring adequate load transfer and process robustness, yet it undergoes considerable degrada-tion under elevated temperatures or harsh service conditions. Instead, the success of mineral-impregnated carbon fibers (MCFs) stems from their structural flexibility, inherent heat re-sistance, and outstanding compatibility with cementitious substrates. Geopolymers (GPs) have recently emerged as a viable coating alternative due to a unique combination of many advantages, e.g., sustainability, source diversity, long early-age processing time, synthesis by controlled low-temperature activation and a wide range of temperature resistance. This work aims to develop and test fast-setting MCF composites and associated processing technologies, which hold significant importance for industrial applications and structural fire safety. As a result of the novelty of mineral impregnation technology, challenges regarding the process chain and mixture must be mastered to explore the full material potential before the technology is translated to key markets. The introductory chapter offers a comprehensive review of fiber-reinforced geopolymer (FRG) systems in response to temperature influences. The concept development is grounded in a systematic investigation of several interrelated, critical processing aspects of GP impregnation, focusing on processing quality and strength evolution. This investigation is conducted alongside an automated and continuous impregna-tion technology. Findings from numerous experiments revealed that targeted thermal curing profoundly influ-enced the mechanical properties and microstructure of the GP matrices and resulting MCFs. Hereby, rapid setting and high early-age strength of MCF, comparable to conventional CFRPs, were achieved within the first several hours of heat curing. The ability of aluminosili-cate particles to penetrate a dense fiber bundle was studied by applying fly ash (FA) with a systematically varied particle size distribution. Thereby, the max. particle size close to the same range of diameter of individual filament proved to be the most efficient, improving both the mechanical performance of MCF and its bond to concrete. Furthermore, an experimental campaign on the role of fiber sizing agents in processing quality and final composite perfor-mance was conducted. The respective impregnation quality and quantity were comprehen-sively explained by varied yarn spreading behavior and wettability, resulting in apparent dif-ferences in filament-matrix morphology and mechanical performance of MCF. To achieve high shape stability, packing density, and tailor-bond characteristics, the effect of surface pro-filing and prototypical winding technology on MCF was investigated. Finally, the bond quality of the MCF was validated through yarn pull-out tests in GP concrete at elevated temperatures and compared with available CFRP. These tests generated parame-ters related to bond behavior, which were then used to construct a three-dimensional numeri-cal model. Based on proper parametric calibrations, good agreement between numerical and experimental characterizations was achieved to predict the material's performance for future applications.:1 Introduction 1 1.1 Motivation 1 1.2 Objectives of the thesis 5 1.3 Thesis structure 7 2 Publications 11 2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12 2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37 2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50 2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66 2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80 2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94 3 Summary and Outlook 108 3.1 Summary of the research work 108 3.2 Outlook 113 References 119 Appendix A IV Appendix B VI / Der Verbundwerkstoff Carbonbeton ist eine vielversprechende Materialklasse für den Bau von leichtgewichtigen, langlebigen und nachhaltigen Strukturen. Hochmoderne Bewehrungen aus Carbonfaser-verstärkte Kunststoffen (CFK) werden durch die Imprägnierung von Endlos-faserbündeln mit einer Polymermatrix hergestellt, was ausreichende Lastübertragungskapazi-tät und Prozessrobustheit gewährleistet, und jedoch durch hohe Temperaturen oder raue Um-gebungen erheblich zerstört wird. Stattdessen resultiert der Erfolg mineralimprägnierter Car-bonfasern (MCFs) aus ihrer strukturellen Flexibilität, inhärenten Wärmebeständigkeit und hervorragenden Kompatibilität mit zementären Substraten. Geopolymere (GPs) haben sich kürzlich als praktikable Beschichtungsalternative herausgestellt, aufgrund einer einzigartigen Kombination vieler Vorteile, wie Nachhaltigkeit, Quellenvielfalt, ausreichendes Verarbei-tungsfenster, Synthese durch kontrollierte thermische Aktivierung bei niedrigen Temperatu-ren und Hitzebeständigkeit. Die vorliegende Arbeit zielt auf die Entwicklung und Erprobung schnell abbindender MCF-Verbundwerkstoffe und zugehöriger Verarbeitungstechnologien ab, was für industrielle An-wendungen und den baulichen Brandschutz von großer Bedeutung ist. Aufgrund der Neuar-tigkeit der mineralischen Imprägnierungstechnologie müssen Herausforderungen in Bezug auf die Prozesskette und Mischung gemeistert werden, um das volle Materialpotenzial zu erkunden, bevor die Technologie auf Schlüsselmärkte übertragen wird. Dementsprechend gibt das einleitende Kapitel einen umfassenden Überblick über faserverstärkte Geopolymer (FRG)-Systeme unter Temperatureinwirkung. Das Entwicklungskonzept baut auf einer sy-stematischen Untersuchung mehrerer zusammenhängender, wichtiger Verarbeitungsaspekte der GP-Imprägnierung in Bezug auf Verarbeitungsqualität und Festigkeitsentwicklung von der Mikro- bis zur Makroskala und in Verbindung mit einer automatisierten und kontinuierli-chen Fertigungstechnologie auf. Ergebnisse zahlreicher Experimente zeigten, dass gezielte Wärmehärtung die mechanischen Eigenschaften und Mikrostruktur der GP-Matrizen und resultierenden MCFs nachhaltig be-einflußt. Hierdurch wurde eine schnelle Aushärtung und hohe Festigkeit von MCF innerhalb der ersten Stunden der Wärmebehandlung erreicht, und zwar vergleichbar mit konventionel-len CFRPs. Die Eindringfähigkeit von Aluminosilikatpartikeln in ein dichtes Faserbündel wurde durch die Anwendung von Flugasche (FA) mit systematisch variierter Partikelgrößen-verteilung untersucht. Dabei erwies sich die maximale Partikelgröße, die nahe dem Durch-messer einzelner Filamente liegt, als am effizientesten. Sie verbesserte sowohl die mechani-sche Leistung von MCF als auch seine Bindung an Beton. Darüber hinaus wurde eine expe-rimentelle Kampagne zur Rolle der Faserschlichte auf die Verarbeitungsqualität und die end-gültige Verbundleistung durchgeführt. Die jeweilige Imprägnierungsqualität wurde umfas-send durch ein unterschiedliches Spreizungsverhalten und Benetzbarkeit des Garns erklärt, was zu deutlichen Unterschieden in der Filament-Matrix-Verteilung und mechanischen Ei-genschaften von MCF führte. Zur Verbesserung der Formstabilität, Packungsdichte und ge-zielten Abstimmung der Verbundeigenschaften im Beton wurde der Effekt der Oberflächen-profilierung und prototypischen Wickeltechnik auf MCF untersucht. Schließlich wurde die Verbundqualität der MCF durch den Garnauszugversuch in GP-Beton bei erhöhten Temperaturen validiert und mit einer verfügbaren CFK-Bewehrung verglichen. Diese Tests generierten auf das Verbundverhalten bezogene Parameter, die dann zur Formu-lierung eines dreidimensionalen numerischen Modells verwendet wurden. Durch angemesse-ne parametrische Kalibrierungen wurde eine gute Übereinstimmung zwischen numerischen und experimentellen Charakterisierungen erreicht, um die Leistung des Materials für zukünf-tige Anwendungen vorherzusagen.:1 Introduction 1 1.1 Motivation 1 1.2 Objectives of the thesis 5 1.3 Thesis structure 7 2 Publications 11 2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12 2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37 2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50 2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66 2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80 2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94 3 Summary and Outlook 108 3.1 Summary of the research work 108 3.2 Outlook 113 References 119 Appendix A IV Appendix B VI
28

Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers

Zhao, Jitong, Liebscher, Marco, Michel, Albert, Junger, Dominik, Trindade, Ana Carolina Constâncio, Silva, Fláviode Andrade, Mechtcherine, Viktor 28 November 2022 (has links)
Mineralisch getränkte Carbonfasern (MCF) stellen eine vielversprechende Alternative zu herkömmlichen Stahlbewehrung in Beton dar. Für eine effiziente industrielle Herstellung von MCF muss eine ausreichende Verarbeitungszeit für die Imprägniersuspension gewährleistet sein. In der vorliegenden Untersuchung wurde zu diesem Zweck ein aus Metakaolin hergestelltes Geopolymer (GP) entwickelt und getestet. Die Tränkung von Carbonfasergarnen wurde kontinuierlich und automatisiert durchgeführt. Anschließend wurden die MCF bei 75 °C wärmebehandelt, um die Reaktionsprozesse zu beschleunigen. Die mechanische Leistung von MCF nahm im Verlauf des Aushärtungsprozesses von 2 auf 8 Stunden allmählich zu, was auf das größere Ausmaß der Geopolymerisation zurückzuführen ist. Bei einer solchen verlängerten Aushärtung zeigten thermogravimetrische und mikroskopische Analysen zwar eine stärkere 'reagierte' Mikrostruktur, aber auch einen höheren Gehalt an Hohlräumen. Nach 8-stündigen Erhitzen erreichten die Zugfestigkeit und der Young-Modul von MCF 2960 MPa bzw. 259 GPa, bezogen auf die Garnquerschnittsfläche.:Abstract Schlagwörter 1. Einleitung 2. Experimentelles Programm 2.1. Materialien 2.2. Herstellung von MCF 2.3. Testen der Geopolymermatrix 2.4. Mechanische Prüfung von MCF 2.5. Morphologische Charakterisierung 3. Ergebnisse und Diskussion 3.1. Charakterisierung der Geopolymermatrix 3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C. 3.3. Chemische und morphologische Analyse 4. Schlussfolgerung Erklärung des konkurrierenden Interesses Literaturen / Mineral-impregnated, carbon fiber composites (MCF) are a promising alternative to conventional concrete reinforcements. For the efficient industrial production of MCF, sufficient processing time for the impregnation suspension must be ensured. In the present investigation, a metakaolin-made geopolymer (GP) has been developed and tested for this purpose. The impregnation of carbon-fiber yarns was performed continuously and automated. Subsequently, the MCF were heat-treated at 75 °C to accelerate the reaction processes. The mechanical performance of MCF gradually increased in the advancement of the curing process from 2 to 8 h, which is attributed to the greater extent of geopolymerization. In such extended curing, thermogravimetric and microscopic analysis showed indeed a more “reacted” microstructure but also a higher content of voids. After heating for 8 h, the tensile strength and Young's modulus of MCF reached 2960 MPa and 259 GPa, respectively, when related to the yarn cross-sectional area.:Abstract Schlagwörter 1. Einleitung 2. Experimentelles Programm 2.1. Materialien 2.2. Herstellung von MCF 2.3. Testen der Geopolymermatrix 2.4. Mechanische Prüfung von MCF 2.5. Morphologische Charakterisierung 3. Ergebnisse und Diskussion 3.1. Charakterisierung der Geopolymermatrix 3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C. 3.3. Chemische und morphologische Analyse 4. Schlussfolgerung Erklärung des konkurrierenden Interesses Literaturen
29

Mechanical properties of fly ash/slag based geopolymer concrete with the addition of macro fibres

Ryno, Barnard 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Geopolymer concrete is an alternative construction material that has comparable mechanical properties to that of ordinary Portland cement concrete, consisting of an aluminosilicate and an alkali solution. Fly ash based geopolymer concrete hardens through a process called geopolymerisation. This hardening process requires heat activation of temperatures above ambient. Thus, fly ash based geopolymer concrete will be an inadequate construction material for in-situ casting, as heat curing will be uneconomical. The study investigated fly ash/slag based geopolymer concrete. When slag is added to the matrix, curing at ambient temperatures is possible due to calcium silicate hydrates that form in conjunction with the geopolymeric gel. The main goal of the study is to obtain a better understanding of the mechanical properties of geopolymer concrete, cured at ambient temperatures. A significant number of mix variations were carried out to investigate the influence that the various parameters, present in the matrix, have on the compressive strength of fly ash/slag based geopolymer concrete. Promising results were found, as strengths as high as 72 MPa were obtained. The sodium hydroxide solution, the slag content and the amount of additional water in the matrix had the biggest influence on the compressive strength of the fly ash/slag based geopolymer concrete. The modulus of the elasticity of fly ash/slag based geopolymer concrete did not yield promising results as the majority of the specimens, regardless of the compressive strength, yielded a stiffness of less than 20 GPa. This is problematic from a structural point of view as this will result in large deflections of elements. The sodium hydroxide solution had the most significant influence on the elastic modulus of the geopolymer concrete. Steel and polypropylene fibres were added to a high- and low strength geopolymer concrete matrix to investigate the ductility improvement. The limit of proportionality mainly depended on the compressive strength of the geopolymer concrete, while the amount of fibres increased the energy absorption of the concrete. A similar strength OPC concrete mix was compared to the low strength geopolymer concrete and it was found that the OPC concrete specimen yielded slightly better flexural behaviour. Fibre pull-out tests were also conducted to investigate the fibre-matrix interface. From the knowledge gained during this study, it can be concluded that the use of fly ash/slag based geopolymer concrete, as an alternative binder material, is still some time away as there are many complications that need to be dealt with, especially the low modulus of elasticity. However, fly ash/slag based geopolymer concrete does have potential if these complications can be addressed. / AFRIKAANSE OPSOMMING: Geopolimeerbeton is ‘n alternatiewe konstruksiemateriaal wat vergelykbare meganiese eienskappe met beton waar OPC die binder is, en wat bestaan uit ‘n aluminosilikaat en ‘n alkaliese oplossing. Vliegas-gebaseerde geopolimeerbeton verhard tydens ‘n proses wat geopolimerisasie genoem word. Hierdie verhardingsproses benodig hitte-aktivering van temperature hoër as dié van die onmiddellike omgewing. Gevolglik sal vliegas-gebaseerde geopolimeerbeton ‘n ontoereikende konstruksiemateriaal vir in situ gietvorming wees, aangesien hitte-nabehandeling onekonomies sal wees. Die studie het vliegas/slagmentgebaseerde geopolimeerbeton ondersoek. Wanneer slagment by die bindmiddel gevoeg word, is nabehandeling by omliggende temperature moontlik as gevolg van kalsiumsilikaathidroksiede wat in verbinding met die geopolimeriese jel vorm. Die hoofdoel van die studie was om ‘n beter begrip te kry van die meganiese eienskappe van geopolimeerbeton, wat nabehandeling by omliggende temperature ontvang het. ‘n Aansienlike aantal meng variasies is uitgevoer om die invloed te ondersoek wat die verskeie parameters, aanwesig in die bindmiddel, op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton het. Belowende resultate is verkry en sterktes van tot so hoog as 72 MPa is opgelewer. Daar is gevind dat die sodiumhidroksiedoplossing, die slagmentinhoud en die hoeveelheid water in die bindmiddel die grootste invloed op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton gehad het. Die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton het nie belowende resultate opgelewer nie. Die meeste van die monsters, ongeag die druksterkte, het ‘n styfheid van minder as 20 GPa opgelewer. Vanuit ‘n strukturele oogpunt is dit problematies, omdat groot defleksies in elemente sal voorkom. Die sodiumhidroksiedoplossing het die grootste invloed op die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton gehad. Staal en polipropileenvesels is by ‘n hoë en lae sterke geopolimeer beton gevoeg om die buigbaarheid te ondersoek. Die die maksimum buigbaarheid het hoofsaaklik afgehang van die beton se druksterkte terwyl die hoeveelheid vesels die beton se energie-opname verhoog het. ‘n OPC beton mengsel van soortgelyke sterkte is vergelyk met die lae sterkte geopolimeerbeton en daar is gevind dat die OPC beton ietwat beter buigbaarheid opgelewer het. Veseluittrektoetse is uitgevoer om die veselbindmiddel se skeidingsvlak te ondersoek. Daar kan tot die gevolgtrekking gekom word dat, alhoewel belowende resultate verkry is, daar steeds sommige aspekte is wat ondersoek en verbeter moet word, in besonder die styfheid, voordat geopolimeerbeton as ‘n alternatiewe bindmiddel kan optree. Volgens die kennis opgedoen tydens hierdie studie, kan dit afgelei word dat die gebruik van vliegas/slagmentgebaseerde geopolimeerbeton, as 'n alternatiewe bindmiddel, nog 'n geruime tyd weg is, as gevolg van baie komplikasies wat gehandel moet word, veral die lae elastisiteitsmodulus. Tog het vliegas/slagmentgebaseerde geopolimeerbeton potensiaal as hierdie komplikasies verbeter kan word.
30

Recycling and Reuse of Wastes as Construction Material through Geopolymerization

Ahmari, Saeed January 2012 (has links)
Storage of mine tailings and waste concrete imposes economical and environmental impacts. Researchers have attempted to reuse wastes as construction material by utilizing ordinary Portland cement (OPC) to stabilize them. This method, however, has a number of limitations related to OPC. In this research, a recent technology called geopolymerization is used to stabilize mine tailings and concrete waste so that they can be completely recycled and reused. The research includes three main parts. The first part studies the effect of different factors on the mechanical properties, micro/nano structure, and elemental and phase composition of mine tailings-based geopolymer binder. The second part investigates the feasibility of producing geopolymer bricks using mine tailings. The physical and mechanical properties, micro/nano structure, durability, and environmental performance of the produced bricks are studied in a systematic way. Moreover, the enhancement of the mine tailings-based geopolymer bricks by adding cement kiln dust (CKD) is studied. The third part of the research investigates the recycling of the fines fraction of crushed waste concrete to produce binder through geopolymerization in order to completely recycle concrete waste. The results indicate the viability of geopolymerization of mine tailings by optimizing the synthesis conditions. By properly selecting these factors, mine tailings-based geopolymer bricks can be produced to meet the ASTM standard requirements and to be environmentally safe by effectively immobilizing the heavy metals in the mine tailings. The physical and mechanical properties and durability of the mine tailings-based geopolymer bricks can be further enhanced by adding a small amount of CKD. The results also show that the fines fraction of crushed waste concrete can be used together with fly ash to produce high performance geopolymer binder. Incorporation of calcium in the geopolymer structure and coexistence of the calcium products such as CSH gel and the geopolymer gel explains the enhancement of the mine tailings-based geopolymer bricks with CKD and the high performance of geopolymer binder from the waste concrete fines and fly ash. The research contributes to sustainable development by promoting complete recycling and utilization of mine tailings and concrete waste as construction material.

Page generated in 0.0445 seconds