• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 214
  • 31
  • 25
  • 20
  • 13
  • 12
  • 9
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 399
  • 168
  • 94
  • 71
  • 70
  • 41
  • 40
  • 39
  • 35
  • 34
  • 32
  • 31
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Developing a Framework for the Purposes of Locating Undiscovered Hydrogeologic Windows

Sutula, Glenn Eric 29 September 2016 (has links)
No description available.
242

Optimal Heat Extraction for Geothermal Energy Applications

Patel, Iti Harshad 29 September 2016 (has links)
No description available.
243

Water Balance of the San Simon Groundwater Basin, El Salvador, Central America: Implications for the Berlin Geothermal Field

Sullivan, Michael P. 08 August 2008 (has links)
No description available.
244

Thermal Stability of Aqueous Foams for Potential Application in Enhanced Geothermal Systems (EGS)

Thakore, Virensinh, 0000-0003-2173-6386 January 2022 (has links)
Traditionally geothermal energy utilizes naturally occurring steam or hot water trapped in permeable rock formations through naturally occurring extraction wells or by implementing the hydraulic fracturing process by fracturing rock formations with water-based fracturing fluids. In contrast, in Enhanced Geothermal System (EGS) hydraulic fracturing process is utilized to create new or reopen existing fractures by injecting high-pressure fluid into deep Hot Dry Rocks (HDR) under carefully controlled conditions. Fracturing fluids are usually water-based that utilize an immense quantity of water. In EGS, they are essential for conducting hydraulic fracturing which bring the concern of technical approach and environmental impact. Thus, an alternative approach is to use waterless fracturing technologies, such as foam-based fracturing fluid. Foams are a complex mixture of the liquid and gaseous phases, where the liquid phase act as an ambient phase and gas is the dispersed phase. Foam fracturing fluids offer potential advantage over conventional water-based fracturing fluids, including reduced water consumption and environmental impact. Although foam-based fracturing has shown promising results in oil and gas industries, its feasibility has not been demonstrated in EGS conditions that usually involve high temperature and high pressures. One potential barrier to utilizing foam as fracturing fluid in EGS applications is that foams are thermodynamically unstable and will become more unstable with increasing temperature due to phenomena such as liquid drainage, bubble coarsening, and coalescence. Therefore, it is essential to stabilize foam fluids at high temperatures for EGS related applications such as fracking of HDRs. This project aims to evaluate the thermodynamic behavior of foams at high temperature and high pressure conditions closely resembling the geothermal environment. In this research, foam behavior was categorized as foam stability based on its half-life, i.e., the time taken by the foam to decrease to 50% of its original height. A laboratory apparatus was constructed to evaluate the foam half-life for a temperature range of room temperature to 200°C and a pressure range of ambient pressure to > 1000 psi. Two types of dispersed/gaseous phases, nitrogen gas (N2) and carbon dioxide gas (CO2), were investigated. Four different types of commercial foaming agents/surfactants with various concentrations were tested, including alfa olefin sulfonate (AOS), sodium dodecyl sulfonate (SDS), TergitolTM (NP – 40), and cetyltrimethylammonium chloride (CTAC). Moreover, five stabilizing agents, guar gum, bentonite clay, crosslinker, silicon dioxide nanoparticles (SiO2), and graphene oxide dispersions (GO), were also added to the surfactants to enhance foam stability. Experimental results showed that N2 foams were more stable than CO2 foams. It was observed that foam half-life decreased with the increase in temperature. Among all the surfactants, AOS foams showed the most promising thermal stability at high temperatures. Moreover, with the addition of stabilizing agents, foam's half-life was enhanced. Stabilizing agents such as crosslinker and GO dispersion showed the most stable foams with half-life recorded at 20 min and 17 min, respectively, at 200°C and 1000 psi. Finally, pressure also showed a positive effect on foam stability; with increased pressure, foam half-life was increased. Based on the experimental data, analytical models for the effect of temperature and pressure were developed, considering foam degradation is a first-order kinetic reaction that linearly depends on the foam drainage mechanism. The effect of temperature on foam half-life was studied as an exponential decay model. In this model, foam half-life is a function of drainage rate constant (DA) and activation energy (Ea) of the foam system. The effect of pressure on foam half-life was found to obey a power-law model where an increase in pressure showed an increase in foam half-life. Furthermore, a linear relation was studied for the effect of pressure on foam activation energy and drainage rate. Then the, combined effects of temperature and pressure were studied, which yielded an analytical model to predict the foam stabilities in terms of half-life for different foam compositions. This research indicates that with an appropriate selection of surfactants and stabilizing agents, it is possible to obtain stable foams, which could replace conventional water fracturing fluid under EGS conditions. / Mechanical Engineering
245

Techno-economic assessment of CO2 refrigeration systems with geothermal integration : a field measurements and modelling analysis

Giunta, Fabio January 2020 (has links)
Several CO2 transcritical booster systems in supermarkets use the potential of integrating geothermal storage, enabling subcooling during warm climate conditions as well as being a heat source during cold climate conditions. First of all, field measurements of one of these systems located in Sweden were analysed with particular focus on the heat-recovery performance. The best theoretical operational strategy was compared to the one really implemented and the differences in the annual energy usage were assessed through modelling. The results show that an alternative to the best theoretical operational strategy exists; heat can be extracted from the ground while low-temperature heat is rejected by the gas cooler. Such an alternative strategy has important technical advantages with a negligible increment of the energy usage. In the second part of this work, the benefits of geothermal subcooling were evaluated. Applying the BIN hours method, it was demonstrated that this system is expected to save on average roughly 5% of the total power consumption, in Stockholm’s climate. The models utilized for the winter and summer season were combined to find the relationship between geothermal storage size and annual energy savings. In this way, it was possible to calculate the present value of the operational savings for the study case. Furthermore, a general methodology for assessing the economic feasibility of this system solution is presented. Finally, several scenarios were investigated to produce parametric curves and to perform a sensitivity analysis. Comparing the results with the typical Swedish prices for boreholes, the cases where this system solution is economically justified were identified. These are supermarkets with a Heat Recovery Ratio (HRR) higher than the average. For examples, supermarkets supplying heat to the neighbouring buildings (considering the Stockholm’s climate, systems with an annual average HRR of at least 70%). Relying only on savings from subcooling was found to be not enough to justify a geothermal storage, a not-negligible amount of heat must be extracted in winter. Finally, some interesting concepts and alternatives to a geothermal integration are presented to point out relevant future work.
246

A CFD Study on the Extraction of Geothermal Energy from Abandoned Oil and Gas Wells

Harris, Brianna 06 1900 (has links)
This thesis investigates the feasibility of converting spent oil and gas wells for use in geothermal power generation. A novel approach to heat exchange with the ground was proposed whereby two directionally drilled (L-shaped) wells are connected to create a continuous loop. A Computational Fluid Dynamics (CFD) model was developed that simulates flow through the connected wells and the associated heat exchange with the ground. The model consisted of a coupled fluid-solid domain; 1D fluid flow was explicitly coupled to the 2D cylindrical solid domain using a convection boundary condition. Temperatures in the solid domain were resolved using an Alternating Direction Implicit (ADI) solver, which suited the largely unidirectional nature of the heat transfer problem. Fluid temperatures were solved for using a Tri-Diagonal Matrix Algorithm (TDMA). The results from a series of simulations demonstrated that geothermal power generation from abandoned wells is feasible under certain conditions. The findings of this research show that the correct selection of a well, considering geothermal gradient, well diameter, and ambient temperatures (impacting the inlet temperature), will significantly influence the level of power production. Further, the simulations show that it is necessary to optimize the flow rate for the given well conditions. The research indicates that the addition of insulation to a portion of the system can lead to modest improvements in power when the system is operated continuously. In contrast, it was found that insulation was necessary for the viability of intermittent use, which would allow the system to meet the demand for peak power generation. The simulations demonstrated that the proposed system could produce approximately 200 kW to 300 kW of electricity. / Thesis / Master of Applied Science (MASc)
247

Design Tool for a Ground-Coupled Ventilation System

Alfadil, Mohammad Omar 26 April 2019 (has links)
Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses regression equations created from many GCV system design simulation data using Autodesk Computational Fluid Dynamics software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV systems' design performances and allows them to save time, money, and effort. / Doctor of Philosophy / Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses equations created from many GCV system designs’ simulation data using simulation software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV system designs’ performance and allows them to save time, money, and effort.
248

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia

Charoenvisal, Kongkun 14 August 2008 (has links)
Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house gas emissions. As a result often environmental design strategies are focused on the performance of these systems. New HVAC technologies such as Geothermal Heat Pump systems have relatively high performance efficiencies when compared to typical systems and therefore could be part of whole-building performance design strategies. In collaboration with the Virginia Tech Corporate Research Center, Inc., this research studies the energy consumption and cost benefits of the Geothermal Heat Pump System that has been integrated and operated in the KnowledgeWorks I and II buildings located on the Virginia Tech campus. The purpose of this thesis is to understand the energy and cost benefits of the Geothermal Heat Pumps System when compared to the conventional package variable air volume (VAV) with hot water coil heating and air-source heat pump systems using computer simulation and statistical models. The quantitative methods of building energy performance and life-cycle cost analyses are applied to evaluate the results of simulation models, the in-situ monitoring data, and the associated documents. This understanding can be expanded to the higher level of architectural systems integration. / Master of Science
249

CFD Simulation Methodology for Ground-Coupled Ventilation System

Alghamdi, Jamal Khaled 08 February 2009 (has links)
In the past two decades, a growing interest in alternative energy resources as a replacement to the non-renewable resources used now days. These alternatives include geothermal energy which can be used to generate power and reduce the demands on energy used to heat and cool buildings. Ground-coupled ventilation system is one of the many applications of the geothermal energy that have a lot of attention in the early 80's and 90's but all designs of the system where based on single case situations. On the other hand, computational fluid dynamics tools are used to simulate heat and fluid flow in any real life situation. They start to develop rapidly with the fast development of computers and processors. These tools provide a great opportunity to simulate and predict the outcome of most problems with minimum loss and better way to develop new designs. By using these CFD tools in GCV systems designing procedure, energy can be conserved and designs going to be improved. The main objective of this study is to find and develop a CFD modeling strategy for GCV systems. To accomplish this objective, a case study must be selected, a proper CFD tool chosen, modeling and meshing method determined, and finally running simulations and analyzing results. All factors that affect the performance of GCV should be taken under consideration in that process such as soil, backfill, and pipes thermal properties. Multiple methods of simulation were proposed and compared to determine the best modeling approach. / Master of Science
250

Climate Impact from Installations of Heating Systems in Buildings : An analysis of underfloor heating and radiator systems from a CO2-perspective

Holmqvist, Anton, Magnusson, Sofia January 2024 (has links)
With the need to reduce greenhouse gas emissions in the building sector, this thesis analyzes two common heating solutions: radiator and underfloor heating. As systems with the same purpose, but with diverse installation components, it was of interest to study the climate impact of different materials. Moreover, the energy performance of the systems was investigated for two different modes of heat supply: with district heating or heat pumps. By coupling the heating systems with modes of heat supply, four models were studied. The thesis aimed at analyzing the climate impact of the models by combining the embodied and operational carbon generated during the life cycle of the heating systems, thus conducting a life cycle assessment. The operational carbon was determined by making an energy analysis in IDA ICE combined with energy carrier emission rates. With an analysis of the material and production stage of the heating systems, the embodied carbon is estimated with the software One Click LCA. The results showed that the embodied carbon had a much smaller influence on the total emissions of the building compared to the operational carbon. It was also concluded that the coupling with a heat pump was more energy efficient than having heat supplied from a district heating network. Regarding the heating systems, the underfloor heating system was slightly more efficient than the radiator heating system when coupled with the heat pump, but required more top-up heating. Throughout the study, several different aspects of the systems were encountered. Changing the district heating supplier resulted in drastic changes in the operational carbon. The electricity mix also heavily influenced the emissions produced by the heat pump. These are factors that vary greatly with the location of the project and one combination of heating and supply systems is far from obvious to be a universal solution. / Med behovet av att minska utsläppen av växthusgaser inom byggsektorn så analyserar detta examensarbete två vanliga värmelösningar: radiatorer och golvvärme. De båda systemen fyller samma syfte, men med olika installationskomponenter, vilket gör det intressant att studera klimatpåverkan av de olika materialen som systemen bygger på. Dessutom undersöktes energiprestandan hos systemen för två olika typer av värmekällor: fjärrvärme eller värmepump. Genom att kombinera värmesystemen med värmekällorna undersöktes fyra olika modeller. Examensarbetet syftade till att analysera modellernas klimatpåverkan genom att kombinera den inbyggda och operativa klimatpåverkan som genererades under värmesystemens livscykel, och följaktligen genomföra en livscykelanalys. De utsläpp som genereras från systemens driftskeden fastställdes genom att göra en energianalys i IDA ICE kombinerat med utsläpp från de olika värmekällorna. Med en analys av material- och produktionsstadiet för värmesystemen så uppskattades den inbyggda klimatpåverkan i programvaran One Click LCA. Resultaten visade att den inbyggda klimatpåverkan hade en mycket mindre effekt på byggnadens totala utsläpp jämfört med den under driftskedet. Det konstaterades också att driva värmesystemet med en värmepump var mer energieffektivt än att få det levererat från ett fjärrvärmenät. Gällande de olika värmesystemen så presterade golvvärmesystemet bättre än radiatorsystemet när det drevs med en värmepump, men det krävdes mer spetsvärme. Under studien stötte man på flera olika variationer av systemens uppbyggnad och funktion, vilket ledde till att val behövde göras för att anpassa till studiens begränsningar. Att byta fjärrvärme distributör resulterade i drastiska skillnader för driftskedets klimatpåverkan. Elmixen påverkade också kraftigt utsläppen som genererades av att driva värmepumpen. Dessa är faktorer som varierar kraftigt beroende på vart byggnaden är placerad och det gick inte att konstatera att ett värmesystem är den universiellt bästa lösningen.

Page generated in 0.0299 seconds