• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização óptica de materiais nanoestruturados por técnicas de geração de segundo e terceiro harmônico

RODRÍGUEZ, Ernesto Arcenio Valdés January 2007 (has links)
Made available in DSpace on 2014-06-12T18:03:09Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2007 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho é dedicado à caracterização óptica de materiais nanoestruturados que são de interesse nas áreas de óptica não linear, optoeletrônica e nanofotônica. Para isto utilizamos a técnica de geração de segundo harmônico incoerente conhecida como técnica de espalhamento hiper-Rayleigh e a técnica de geração de terceiro harmônico. Os materiais investigados são vitrocerâmicas contendo nanocristais de niobato de sódio (NaNbO3) e colóides contendo nanopartículas de titanato de bário (BaTiO3) e titanato de chumbo (PbTiO3) em etanol. O primeiro capítulo apresenta uma introdução sobre materiais nanoestruturados e sua relação com a óptica não linear, e no mesmo capítulo descrevemos algumas propriedades particulares dos materiais estudados nesta pesquisa assim com o processo de elaboração das amostras. O capitulo 2 é dedicado às questões teóricas relacionadas com os fenômenos de geração de harmônicos coerentes e incoerentes. Os capítulos 3 e 4 são dedicados a técnica de espalhamento hiper-Rayleigh e a técnica de terceiro harmônico. Em ambos os capítulos fazemos uma descrição das técnicas e dos experimentos realizados e os resultados obtidos. A técnica de espalhamento hiper-Rayleigh foi desenvolvida para determinar a primeira hyperpolarizabilidade (β) de moléculas em solução, mas nos últimos anos também tem sido utilizada para determinar a primeira hiperpolarizabilidade efetiva de nanopartículas em colóides. Em nosso trabalho, utilizamos esta técnica pela primeira vez para determinar β de nanopartículas inseridas numa matriz vítrea. Também utilizamos a técnica para determinar β de nanopartículas de materiais ferroelétricos suspensas em etanol. O valor de β calculado para as partículas de NaNbO3 foi muito baixo se comparado com o valor reportado para partículas semicondutoras de igual tamanho, enquanto o valor calculado para as partículas de BaTiO3 e PbTiO3 foi da ordem de outros materiais semicondutores. A técnica de geração de terceiro harmônico é utilizada para determinar a susceptibilidade de terceira ordem de materiais transparentes, para isto é utilizado o método de franjas de Maker que é tradicionalmente realizado com pulsos monocromáticos, e permite calcular o comprimento de coerência de geração de segundo o terceiro harmônico dos materiais e o coeficiente não linear de terceiro harmônico. Em nossa pesquisa realizamos o experimento pela primeira vez com pulsos de femtossegundos e desenvolvemos um método para determinar a curva de dispersão de materiais e o coeficiente não linear. O método foi utilizado para a caracterização das vitrocerâmicas contendo nanocristais de niobato de sódio
2

Third-harmonic generation at interfaces with femtosecond pulses: self-focusing contribution and nonlinear microscopy / Geração de terceiro harmônico em interfaces com pulsos de femtossegundos: contribuição da autofocalização e microscopia não linear

Barbano, Émerson Cristiano 24 November 2016 (has links)
Third-harmonic generation (THG) is a fundamental nonlinear optical process that has been used in different applications such as third-order nonlinear materials characterization and nonlinear microscopy. It is widely employed since the third-order nonlinearity is the most important in isotropic materials and THG occurs in all media regardless of symmetry. In the tightly focused laser beam condition THG is observed only at the materials interfaces, where the focal symmetry is broken due to the presence of two media with different refractive index and/or third-order susceptibilities. Measuring slabs of different types of optical glasses, using femtosecond laser pulses, we could explain the asymmetric THG intensity profile observed at the interfaces. The harmonic generated at the exit interface is systematically stronger than the one generated at the entrance and this phenomenon can be understood by taking into account the presence of self-focusing effects. Basically, the self-focusing reduces the beam waist radius at the exit interface, resulting in greater laser irradiance and, consequently, higher THG. This study was then extended to the interfaces of a cuvette filled with organic solvents. Such systems present four interfaces and a mixture of nonlinear processes contributions since the cuvette walls present only electronic nonlinearity and the solvents present both electronic and orientational ones. In this way, the solvents may present an additional self-focusing contribution and, due to the noninstantaneous nature of the orientational process, the self-focusing from the solvent may be influenced by the pulse duration. In this case, the THG, which is an instantaneous electronic phenomenon, can be indirectly affected by pulse duration by means of the self-focusing effect. Usually, the slow orientational contribution is not considered for materials characterization by THG which may lead to incorrect nonlinear coefficient values, that means our study is important from the fundamental physics point of view and also for applications such as materials characterization. Based on the application of THG in nonlinear microscopy, we also present a microscopy technique which makes use of spatial frequency-modulated imaging (SPIFI) with single element detection. The microscope was developed at Colorado School of Mines (CSM) during an internship. The system uses a spatial light modulator (SLM) to provide the spatial frequency modulation and permits enhanced resolution images. THG SPIFI images are shown for the first time and we also report images obtained by other nonlinear optical process. In summary, the studies presented in this PhD work are of great importance for THG fundamental understanding, materials characterization and nonlinear optical microscopy. / Geração de terceiro harmônico (GTH) é um processo óptico não linear fundamental que tem sido usado em diferentes aplicações, como em caracterização óptica não linear de materiais e microscopia não linear. Ele é amplamente empregado uma vez que a não linearidade de terceira ordem é a mais importante em materiais isotrópicos e GTH ocorre em todos os meios independente da simetria. Na condição de feixe fortemente focalizado a GTH é observada apenas nas interfaces do material, onde a simetria focal é quebrada devido à presença de dois meios com diferentes índices de refração e/ou susceptibilidades de terceira ordem. Medindo lâminas de diferentes tipos de vidros ópticos, com pulsos de laser de femtossegundos, nós explicamos o perfil assimétrico de intensidade de GTH observado nas interfaces. O harmônico gerado na interface de saída é sistematicamente mais intenso do que o gerado na entrada e este fenômeno pode ser entendido levando-se em conta a presença do efeito de autofocalização. Basicamente, a autofocalização reduz a cintura do feixe na interface de saída do material, resultando em uma maior irradiância e, consequentemente, maior GTH. Este estudo foi estendido para o caso de interfaces de uma cubeta preenchida com diferentes solventes orgânicos. Tais sistemas apresentam quatro interfaces e uma mistura na contribuição dos processos não lineares, dado que as paredes da cubeta apresentam apenas não linearidade eletrônica e os solventes podem apresentar não linearidades tanto eletrônicas quanto orientacionais. Neste sentido, os solventes podem apresentar uma contribuição adicional de autofocalização e, devido à natureza não instantânea do processo orientacional, a autofocalização proveniente do solvente pode ser influenciada pela duração do pulso. Neste caso, a GTH, que é um fenômeno eletrônico (instantâneo), pode ser indiretamente afetada pela duração do pulso por meio do efeito de autofocalização. Usualmente, a contribuição orientacional não é considerada na caracterização de materiais por GTH, o que pode levar à valores incorretos para os coeficientes não lineares, o que significa que nosso estudo é importante do ponto de vista de física fundamental como também em aplicações como caracterização de materiais. Por conta da aplicação da GTH em microscopia não linear, apresentamos também nesta tese uma técnica de microscopia, que baseia-se em uma modulação em frequência espacial para imageamento (SPIFI) com uso de um detector de elemento único. O microscópio foi desenvolvido na Colorado School of Mines (CSM) durante um período de estágio. O sistema utiliza um modulador espacial de luz (SLM) para produzir a modulação em frequência espacial e permite obtenção de imagens em alta resolução. Imagens por GTH SPIFI são mostradas pela primeira vez e também apresentamos imagens obtidas por outros processos ópticos não lineares. Em resumo, os estudos apresentados neste trabalho de doutorado são de grande importância para o entendimento fundamental do processo de GTH, caracterização de materiais e microscopia óptica não linear.
3

Técnica de varredura-Z com pulsos de femtossegundo e geração de terceiro harmônico / Z-scan tecnique with femtosecond pulse and third-harmonic generation

Barbano, Émerson Cristiano 09 February 2012 (has links)
Neste trabalho fizemos um estudo da geração de terceiro harmônico (GTH) usando pulsos de femtossegundos (fs). A GTH é uma importante técnica que permite estudar propriedades ópticas não lineares de terceira ordem de materiais. Estudamos a GTH aplicando as técnicas de franjas de Maker e a de varredura-Z em diferentes materiais levando em conta as contribuições de suas interfaces. A técnica de franjas de Maker com GTH permite a determinação de propriedades ópticas lineares e não lineares de volume, mas não de interface, portanto, a técnica de varredura-Z na condição de focalização forte foi implementada para estudar a influência da interface na GTH. Estudamos diversos vidros ópticos (sílica, K10, SK11, LLF1 e LLF6) e também diferentes soluções (acetona, clorofórmio, DMSO e tolueno) em uma cubeta. Em termos de número de interfaces, usando uma lâmina de vidro temos duas, no caso de um sanduíche de dois vidros temos três (entrada, meio e saída) e temos quatro interfaces para a cubeta. Observamos que elas contribuem tanto nas intensidades quanto nos espectros dos terceiros harmônicos (TH) gerados. Dependendo do tipo de interface e do sentido de propagação, tanto a intensidade quanto o espectro do TH são diferentes. Observamos que a reflexão de Fresnel atua significativamente nas diferenças de intensidades da GTH nas interfaces entre dois meios com índices de refração lineares diferentes. Uma interferência construtiva ocorre quando o feixe de laser propaga de um material com índice de refração mais alto para outro com índice mais baixo, aumentando a intensidade do laser e, consequentemente, gerando mais TH. Uma interferência destrutiva ocorre numa propagação oposta. Outro efeito interessante observado foi que, além da magnitude da não linearidade do meio, existem as contribuições da propagação e da modulação de fase cruzada no alargamento espectral do TH. Dessa forma, o alargamento espectral depende da não linearidade do meio e também do sentido de propagação no caso de interfaces. Em resumo, esse estudo nos levou a uma melhor compreensão dos fenômenos não lineares de GTH nas interfaces, e também possibilitou o surgimento de um novo método que pode ser usado para a determinação da susceptibilidade de terceira ordem de materiais. / In this work we did a study of the third-harmonic generation (THG) using femtosecond pulses. The THG is an important technique which allows studying thirdorder nonlinear optical properties of materials. We studied the THG by the Maker fringes and the Z-scan techniques in different materials taking into account their interfaces contributions. The Maker fringes technique with THG allows the determination of the bulk linear and the nonlinear properties, but not of the interface. Therefore, the Z-scan technique in the tight focused condition was implemented to study the interface influences on the THG. We studied several optical glasses (silica, K10, SK11, LLF1 and LLF6) and different solutions (acetone, chloroform, DMSO and toluene) in a cuvette. In term of numbers of interfaces, using a glass slab we have two, in the case of two sandwiched optical glasses we have three (input, middle and output) and for the cuvette we have four interfaces. We have observed that they play an important role on the third-harmonic (TH) intensities and spectra. Depending of the interface type and propagation direction, the TH intensity and spectrum are different. We have observed that the Fresnel reflection has a significant effect on the THG intensity differences between two media with different linear refractive indices. A constructive interference occurs when the laser beam propagates from one material with higher refractive index to one with lower refractive index, increasing the laser intensity and, consequently generating more TH. A destructive interference occurs in the opposite propagation case. Another important effect observed was that, beside the materials nonlinearity magnitude, there are propagation and cross-phase modulation contributions to the TH spectrum broadening. In this way, the spectrum broadening depends on the materials nonlinear properties and the propagation direction on the case of interfaces. In summary, this study leads to a better understanding of the TH nonlinear phenomena, and also, has allowed one new method for third-order nonlinear susceptibility determination.
4

Técnica de varredura-Z com pulsos de femtossegundo e geração de terceiro harmônico / Z-scan tecnique with femtosecond pulse and third-harmonic generation

Émerson Cristiano Barbano 09 February 2012 (has links)
Neste trabalho fizemos um estudo da geração de terceiro harmônico (GTH) usando pulsos de femtossegundos (fs). A GTH é uma importante técnica que permite estudar propriedades ópticas não lineares de terceira ordem de materiais. Estudamos a GTH aplicando as técnicas de franjas de Maker e a de varredura-Z em diferentes materiais levando em conta as contribuições de suas interfaces. A técnica de franjas de Maker com GTH permite a determinação de propriedades ópticas lineares e não lineares de volume, mas não de interface, portanto, a técnica de varredura-Z na condição de focalização forte foi implementada para estudar a influência da interface na GTH. Estudamos diversos vidros ópticos (sílica, K10, SK11, LLF1 e LLF6) e também diferentes soluções (acetona, clorofórmio, DMSO e tolueno) em uma cubeta. Em termos de número de interfaces, usando uma lâmina de vidro temos duas, no caso de um sanduíche de dois vidros temos três (entrada, meio e saída) e temos quatro interfaces para a cubeta. Observamos que elas contribuem tanto nas intensidades quanto nos espectros dos terceiros harmônicos (TH) gerados. Dependendo do tipo de interface e do sentido de propagação, tanto a intensidade quanto o espectro do TH são diferentes. Observamos que a reflexão de Fresnel atua significativamente nas diferenças de intensidades da GTH nas interfaces entre dois meios com índices de refração lineares diferentes. Uma interferência construtiva ocorre quando o feixe de laser propaga de um material com índice de refração mais alto para outro com índice mais baixo, aumentando a intensidade do laser e, consequentemente, gerando mais TH. Uma interferência destrutiva ocorre numa propagação oposta. Outro efeito interessante observado foi que, além da magnitude da não linearidade do meio, existem as contribuições da propagação e da modulação de fase cruzada no alargamento espectral do TH. Dessa forma, o alargamento espectral depende da não linearidade do meio e também do sentido de propagação no caso de interfaces. Em resumo, esse estudo nos levou a uma melhor compreensão dos fenômenos não lineares de GTH nas interfaces, e também possibilitou o surgimento de um novo método que pode ser usado para a determinação da susceptibilidade de terceira ordem de materiais. / In this work we did a study of the third-harmonic generation (THG) using femtosecond pulses. The THG is an important technique which allows studying thirdorder nonlinear optical properties of materials. We studied the THG by the Maker fringes and the Z-scan techniques in different materials taking into account their interfaces contributions. The Maker fringes technique with THG allows the determination of the bulk linear and the nonlinear properties, but not of the interface. Therefore, the Z-scan technique in the tight focused condition was implemented to study the interface influences on the THG. We studied several optical glasses (silica, K10, SK11, LLF1 and LLF6) and different solutions (acetone, chloroform, DMSO and toluene) in a cuvette. In term of numbers of interfaces, using a glass slab we have two, in the case of two sandwiched optical glasses we have three (input, middle and output) and for the cuvette we have four interfaces. We have observed that they play an important role on the third-harmonic (TH) intensities and spectra. Depending of the interface type and propagation direction, the TH intensity and spectrum are different. We have observed that the Fresnel reflection has a significant effect on the THG intensity differences between two media with different linear refractive indices. A constructive interference occurs when the laser beam propagates from one material with higher refractive index to one with lower refractive index, increasing the laser intensity and, consequently generating more TH. A destructive interference occurs in the opposite propagation case. Another important effect observed was that, beside the materials nonlinearity magnitude, there are propagation and cross-phase modulation contributions to the TH spectrum broadening. In this way, the spectrum broadening depends on the materials nonlinear properties and the propagation direction on the case of interfaces. In summary, this study leads to a better understanding of the TH nonlinear phenomena, and also, has allowed one new method for third-order nonlinear susceptibility determination.
5

Third-harmonic generation at interfaces with femtosecond pulses: self-focusing contribution and nonlinear microscopy / Geração de terceiro harmônico em interfaces com pulsos de femtossegundos: contribuição da autofocalização e microscopia não linear

Émerson Cristiano Barbano 24 November 2016 (has links)
Third-harmonic generation (THG) is a fundamental nonlinear optical process that has been used in different applications such as third-order nonlinear materials characterization and nonlinear microscopy. It is widely employed since the third-order nonlinearity is the most important in isotropic materials and THG occurs in all media regardless of symmetry. In the tightly focused laser beam condition THG is observed only at the materials interfaces, where the focal symmetry is broken due to the presence of two media with different refractive index and/or third-order susceptibilities. Measuring slabs of different types of optical glasses, using femtosecond laser pulses, we could explain the asymmetric THG intensity profile observed at the interfaces. The harmonic generated at the exit interface is systematically stronger than the one generated at the entrance and this phenomenon can be understood by taking into account the presence of self-focusing effects. Basically, the self-focusing reduces the beam waist radius at the exit interface, resulting in greater laser irradiance and, consequently, higher THG. This study was then extended to the interfaces of a cuvette filled with organic solvents. Such systems present four interfaces and a mixture of nonlinear processes contributions since the cuvette walls present only electronic nonlinearity and the solvents present both electronic and orientational ones. In this way, the solvents may present an additional self-focusing contribution and, due to the noninstantaneous nature of the orientational process, the self-focusing from the solvent may be influenced by the pulse duration. In this case, the THG, which is an instantaneous electronic phenomenon, can be indirectly affected by pulse duration by means of the self-focusing effect. Usually, the slow orientational contribution is not considered for materials characterization by THG which may lead to incorrect nonlinear coefficient values, that means our study is important from the fundamental physics point of view and also for applications such as materials characterization. Based on the application of THG in nonlinear microscopy, we also present a microscopy technique which makes use of spatial frequency-modulated imaging (SPIFI) with single element detection. The microscope was developed at Colorado School of Mines (CSM) during an internship. The system uses a spatial light modulator (SLM) to provide the spatial frequency modulation and permits enhanced resolution images. THG SPIFI images are shown for the first time and we also report images obtained by other nonlinear optical process. In summary, the studies presented in this PhD work are of great importance for THG fundamental understanding, materials characterization and nonlinear optical microscopy. / Geração de terceiro harmônico (GTH) é um processo óptico não linear fundamental que tem sido usado em diferentes aplicações, como em caracterização óptica não linear de materiais e microscopia não linear. Ele é amplamente empregado uma vez que a não linearidade de terceira ordem é a mais importante em materiais isotrópicos e GTH ocorre em todos os meios independente da simetria. Na condição de feixe fortemente focalizado a GTH é observada apenas nas interfaces do material, onde a simetria focal é quebrada devido à presença de dois meios com diferentes índices de refração e/ou susceptibilidades de terceira ordem. Medindo lâminas de diferentes tipos de vidros ópticos, com pulsos de laser de femtossegundos, nós explicamos o perfil assimétrico de intensidade de GTH observado nas interfaces. O harmônico gerado na interface de saída é sistematicamente mais intenso do que o gerado na entrada e este fenômeno pode ser entendido levando-se em conta a presença do efeito de autofocalização. Basicamente, a autofocalização reduz a cintura do feixe na interface de saída do material, resultando em uma maior irradiância e, consequentemente, maior GTH. Este estudo foi estendido para o caso de interfaces de uma cubeta preenchida com diferentes solventes orgânicos. Tais sistemas apresentam quatro interfaces e uma mistura na contribuição dos processos não lineares, dado que as paredes da cubeta apresentam apenas não linearidade eletrônica e os solventes podem apresentar não linearidades tanto eletrônicas quanto orientacionais. Neste sentido, os solventes podem apresentar uma contribuição adicional de autofocalização e, devido à natureza não instantânea do processo orientacional, a autofocalização proveniente do solvente pode ser influenciada pela duração do pulso. Neste caso, a GTH, que é um fenômeno eletrônico (instantâneo), pode ser indiretamente afetada pela duração do pulso por meio do efeito de autofocalização. Usualmente, a contribuição orientacional não é considerada na caracterização de materiais por GTH, o que pode levar à valores incorretos para os coeficientes não lineares, o que significa que nosso estudo é importante do ponto de vista de física fundamental como também em aplicações como caracterização de materiais. Por conta da aplicação da GTH em microscopia não linear, apresentamos também nesta tese uma técnica de microscopia, que baseia-se em uma modulação em frequência espacial para imageamento (SPIFI) com uso de um detector de elemento único. O microscópio foi desenvolvido na Colorado School of Mines (CSM) durante um período de estágio. O sistema utiliza um modulador espacial de luz (SLM) para produzir a modulação em frequência espacial e permite obtenção de imagens em alta resolução. Imagens por GTH SPIFI são mostradas pela primeira vez e também apresentamos imagens obtidas por outros processos ópticos não lineares. Em resumo, os estudos apresentados neste trabalho de doutorado são de grande importância para o entendimento fundamental do processo de GTH, caracterização de materiais e microscopia óptica não linear.
6

Microscopias de óptica não linear = fluorescência excitada por absorção de dois fótons, geração de segundo harmônico e geração de terceiro harmônico / Non linear optical microscopies : two photon excited fluorescence, second harmonic generation and third harmonic generation

Pelegati, Vitor Bianchin, 1982- 17 August 2018 (has links)
Orientador: Carlos Lenz Cesar / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T16:12:03Z (GMT). No. of bitstreams: 1 Pelegati_VitorBianchin_M.pdf: 3778666 bytes, checksum: d19d947cc4b4206345d5c2da244362d6 (MD5) Previous issue date: 2010 / Resumo: Biologia celular é um novo mundo promissor com enorme impacto social, econômico e na saúde. Organismos vivos são capazes de, produzir a própria energia a partir da luz do sol, se reproduzir, de se auto-reparar, sinalizar e navegar por sinais bioquímicos, biomecânicos, luminosos, térmicos, e outros, e produzir materiais à temperatura ambiente. As possibilidades abertas por essa área incluem, desde bactérias e protozoários usados para destruir células de câncer, regeneração de órgãos inteiros, produção de etanol a partir de algas, e outros. Entretanto, para o entendimento da biologia em seu nível mais profundo, ferramentas de observação não destrutivas fazem-se necessária para seguir os processos celulares durante seu tempo de vida. A óptica tem a única onda não destrutiva capaz de fornecer informações em tempo real com suficiente resolução espacial de eventos acontecendo internamente à célula. Ademais, porque feixes de luz não colidem, a óptica permite a integração de diferentes técnicas capazes de reunir informações simultâneas de processos celulares. Óptica não linear é especialmente adequada para tal, pois não requer marcação ou processamentos especiais de amostras que poderiam destruir, ou modificar, os processos celulares. Além disso, técnicas elásticas, como a geração de segundo e terceiro harmônicos não liberam energia no material que é, portanto, preservado após a observação. O objetivo dessa tese é desenvolver uma plataforma multimodal para observação de processos biológicos pelo uso de microscopias de fluorescência excitada por absorção de dois fótons, geração de segundo harmônico e geração de terceiro harmônico no mesmo instrumento. Nosso grupo foi pioneiro em demonstrar a aquisição de imagens de geração de segundo harmônico no Brasil e, essa tese é a primeira a realizar a aquisição de imagens por geração de terceiro harmônico. Estas três técnicas juntas fornecem informações complementares a respeito da organização de células e tecidos. Enquanto a fluorescência pode ser específica para algumas proteínas alvo, o segundo harmônico pode observar a rede de colágeno da matriz extra celular e, o terceiro harmônico pode observar os núcleos e gotículas de lipídios internas às células. Esta tese descreve o sistema experimental para realizar essas aquisições multimodais de imagens, a física por trás dos sinais não lineares, importantes para entender seu significado biológico, e mostra aplicações das técnicas para diferentes amostras biológicas e inorgânicas / Abstract: Cell biology is promising a brave new world with enormous social economic and health impacts. Living organisms are capable of producing their own energy from sun light, reproduce, self-repair, signalize and travel in response to biochemical, biomechanical, light and thermal signals among others, and to produce materials at room temperature. The possibilities opened by this area range from bacteria and protozoa used to destroy cancer cells, whole organs regeneration, ethanol produced from algae, and others. However, to actually understand biology at its deepest level no destructive observation tools are necessary to follow cell processes during their time course. Optics is about the only wave capable to provide non destructive real time information with enough spatial resolution of the events happening inside the cells. Moreover, because light beams do not collide, optics allows the integration of different techniques capable to gather simultaneous information during a cell process. Non linear optics is specially suited for that in the sense that it does not require staining or special sample processing that would destroy, or change, the process. Besides, elastic techniques such as second and third harmonic generation do not release energy at the material which is therefore preserved after the observation. The objective of this thesis is to develop a multimodality platform for biology process observation by using Two Photon Excited Fluorescence, Second Harmonic Generation and Third Harmonic Generation Microscopy with the same instrument. Our group was the first one to demonstrate the acquisition of Second Harmonic Generation images in Brazil and this thesis is the first one to perform the acquisition of third harmonic generation images. These three techniques together provide complementary information respect to cell and tissue organization. While fluorescence can be specific target to some proteins, second harmonic can observe the collagen network of extra cellular matrix and the third harmonic can observe the nucleus and lipid droplets inside the cells. This thesis describe the experimental setup to perform these multimodal image acquisition, the physics behind the non linear signals, important to understand their biological mean, and shows applications of these techniques for different biological and inorganic samples / Mestrado / Física / Mestre em Física
7

Plataforma fotônica integrada e suas aplicações em estudos de quantum dots e processos biológicos / Integrated photonic platform and applications on quantum dots and biological processes studies

Thomaz, André Alexandre de, 1980- 27 March 2013 (has links)
Orientador: Carlos Lenz Cesar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-22T08:41:16Z (GMT). No. of bitstreams: 1 Thomaz_AndreAlexandrede_D.pdf: 9291787 bytes, checksum: 9554ec1cfb5b3952506ff59b61aec5f9 (MD5) Previous issue date: 2013 / Resumo: A comunidade científica concorda que há grandes chances que a próxima revolução tecnológica virá do controle dos processos biológicos. Grandes mudanças são esperadas, desde como produzimos alimentos até como combatemos as doenças. O controle dos processos biológicos nos permitirá produzir carne sintética para alimentação, produzir biocombustíveis retirando CO2 da atmosfera, produzir órgãos inteiros para transplante e combater de forma eficiente doenças como câncer, por exemplo. Está claro para o nosso grupo que para se obter esses resultados é necessário entender a biologia na sua unidade mais básica: a célula. A partir do entendimento e domínio das reações químicas que acontecem dentro da célula, e mais especificamente do controle do DNA, é que vamos conseguir atingir essas previsões e revolucionar a maneira como vivemos hoje. Com esse pensamento em mente, o objetivo dessa tese foi desenvolver uma plataforma fotônica integrada para estudos de processos celulares. Nós acreditamos que as ferramentas fotônicas são as ferramentas que preenchem todos os requisitos para os estudos de processos celulares, pois possibilitam o acompanhamento dos processos em tempo real sem causar dano as células. As técnicas presentes são: fluorescência excitada por 1 ou 2 fotons, geração de segundo ou terceiro harmônico, pinças ópticas, imagem por tempo de vida da fluorescência e "fluorescence correlation spectroscopy" (FCS). Nesta tese demonstramos como montar essa plataforma integrada e mostramos sua versatilidade com resultados em várias áreas da biologia e também para o estudo de quantum dots. / Abstract: The scientific community believes there is a great chance that the next technological revolution is coming from the control of biological processes. Great changes are expected, from the way we produce food up to the way we fight diseases. The control of biological processes will allow us to produce synthetic meat as food, to produce biofuels extracting CO2 directly from the atmosphere, to produce whole synthetic organs for transplant and to fight diseases, like cancer, in more efficient ways. It is clear to our group that in order to obtain these results it is necessary to understand biology from its most basic unity: the cell. Only from understanding and controlling chemical reactions inside a cell, and more specifically from the DNA controlling, it will be possible to achieve these predictions and cause a revolution in the way we live nowadays. Bearing these thoughts in mind, the objective of this thesis was to develop an integrated photonic platform for study of cellular processes. We believe that photonic tools are the only tools that fulfill all the requeriments for studies of cellular processes because they are capable to follow processes in real time without any damage to the cells. The techniques integrated are: 1 or 2 photon excited fluorescence, second or third harmonic generation, optical tweezers, fluorescence lifetime imaging and fluorescence correlation spectroscopy. In this thesis we demonstraded how to assemble this integrated plataform and we showed its versatility with results from different areas of biology and quantum dots. / Doutorado / Física / Doutor em Ciências
8

Microscopias ópticas de processos coerentes / Optical microscopies of coherent processes

Pelegati, Vitor Bianchin, 1982- 20 December 2016 (has links)
Orientador: Carlos Lenz César / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-01T03:43:43Z (GMT). No. of bitstreams: 1 Pelegati_VitorBianchin_D.pdf: 6822381 bytes, checksum: 86749ce34dc184aeb7ed4b4ee47d70b3 (MD5) Previous issue date: 2016 / Resumo: Técnicas de microscopias ópticas são as principais ferramentas capazes de observar células e tecidos biológicos em tempo real e com mínimo dano. Essa área foi revolucionada recentemente através das microscopias confocais de varredura a laser e as microscopias de óptica não linear, naturalmente confocais. Entre os processos não lineares temos, a fluorescência excitada por dois ou mais fótons, geração de segundo harmônico [Second Harmonic Generation - SHG] e terceiro harmônico [Third Harmonic Generation - THG]. SHG e THG são técnicas de óptica não linear coerentes, não necessitam de marcadores exógenos e permitem reconstrução de imagens em três dimensões com resolução espacial subcelular. As técnicas de fluorescência permitem visualizar estruturas específicas no espaço, mas não permitem discriminar as substâncias químicas nas estruturas celulares, e as técnicas de SHG e THG não possuem especificidade química. Espectroscopia Raman possui especificidade química através das propriedades vibracionais das moléculas e pode ser usada como mecanismo de contraste na aquisição de imagens. Comparada com a espectroscopia/microscopia infravermelho, a microscopia Raman traz a informação das vibrações moleculares do infravermelho para o visível, eliminando os problemas da baixa resolução espacial e opacidade das amostras. Entretanto a baixa sensibilidade dessa técnica implica em tempos de aquisição de imagens muito longos, da ordem de horas, inviabilizando acompanhar a dinâmica de processos celulares em tempo real. Como solução para essa baixa sensibilidade do espalhamento Raman espontâneo, surgiu a microscopia por espalhamento Raman Coerente anti-Stokes [Coherent Anti-Stokes Raman Scattering - CARS]. Comparado com Raman espontâneo, a microscopia CARS representa aumento de 4 a 5 ordens de grandeza na sensitividade da técnica, diminuindo os tempos de aquisição ao ponto de viabilizar a aquisição em taxas de vídeos (mais rápido do que 30 quadros por segundo) e estudos em tempo real. Essa tese é dedicada ao estudo experimental e teórico, assim como de algumas aplicações, das técnicas de óptica não linear, com destaque para processos de óptica não linear coerentes. Apresentamos de forma detalhada três sistemas experimentais para a aquisição de imagens de Raman coerente e um sistema integrado com várias técnicas de óptica não linear. Mostramos as primeiras imagens de CARS realizadas no Brasil. Além do CARS convencional, trabalhamos com outra técnica de CARS de ordem mais alta, o CARS cascata [cascade CARS - CCARS], e, no melhor do nosso conhecimento, apresentamos as primeiras imagens internacionais obtidas com essa metodologia. CCARS aumenta o contraste da técnica CARS, diminuindo o fundo não ressonante, um problema que aflige a comunidade científica dedicada ao uso dessa técnica. Além da diminuição do fundo não ressonante, a emissão do CCARS acontece em um comprimento de onda diferente de qualquer outro efeito não linear coerente, significando um acréscimo de complexidade mínimo para sua detecção quando comparado com o CARS. Por último mostramos algumas aplicações realizadas com o sistema experimental desenvolvido para integrar diversas modalidades ópticas em paralelo, especialmente da geração de harmônicos com a fluorescência excitada por dois fótons e suas variantes, como microscopia de tempo de vida de fluorescência (Fluorescence Lifetime Imaging ¿ FLIM) / Abstract: Optical microscopies techniques are the main tools capable of observing cell and biological tissues in real time and with minimum damage. This area have recently been revolutionized by confocal laser scanning microscopies and non-linear microscopies, naturally confocal. Among the non-linear process we have, the two or more photons excited fluorescence, second harmonic generation [SHG] and third harmonic generation [THG]. SHG and THG are coherent nonlinear techniques, they do not require exogenous markers and allow three dimension imaging reconstruction with subcellular resolution. The fluorescence techniques allow visualizing specific structures in space, but do not allow discriminating the chemical substances in cellular structures, SHG and THG techniques do not have chemical specificity. Raman spectroscopy has chemical specificity through the vibrational properties of the molecules and can be used as a contrast mechanism for imaging acquisition. Compared to infrared spectroscopy/microscopy, Raman microscopy brings information about molecular vibration from infrared to visible, eliminating the low resolution and sample opacity problems. However, this technique low sensibility implies in very long imaging acquisition times, order of hours, making it not viable for following cellular process dynamics in real time. As an answer for the spontaneous Raman scattering low sensibility, the coherent anti-Stokes Raman scattering [CARS] emerged. Compared to spontaneous Raman, CARS microscopy presents an increase of 4 to 5 orders of magnitude in the sensitivity of the technique, lowering the acquisition times to the point of making video acquisition (faster than 30 frames per second) and real time studies possible. This thesis is dedicated to the experimental and theoretical study, as well as some applications, of the non-linear techniques, with emphasis on coherent non-linear optical processes. We present in detailed form three experimental systems for the acquisition of coherent Raman images, and a system with the integration of various non-linear techniques. We show the first CARS images acquired in Brazil. In addition to conventional CARS, we worked with other higher order CARS technique, the cascade CARS [CCARS], and, in the best of our knowledge, we present the first international image acquired with this methodology. CCARS increases the contrast from CARS technique, decreasing the non-resonant background, a problem that afflicts the scientific community dedicated to the use of this technique. Besides the decrease of the non-resonant background, the CCARS emission occurs in a different wavelength from any other non-linear coherent effect, meaning a minimum complexity increase for its detection when compared with CARS. Finally we show some applications performed with the experimental system developed to integrate several optical modalities in parallel, especially the generation of harmonics with two photons excitation fluorescence and their variants such as Fluorescence Lifetime Imaging [FLIM] / Doutorado / Física / Doutor em Ciências / 830406/2010 / CAPES

Page generated in 0.1644 seconds