Spelling suggestions: "subject:"third harmonic generation microscopy"" "subject:"nhird harmonic generation microscopy""
1 |
Nonlinear Optical Microscopy in Thin Film Ferroelectric MaterialsAmber, Zeeshan Hussain 31 January 2025 (has links)
The Nonlinear optical (NLO) microscopy is a very powerful and noninvasive tool to analyze the material properties, such as the local symmetry, as well as to visualize ferroelectric domains and domain walls. As a result, NLO microscopy becomes a very powerful tool in characterization and quality control which are key tasks in material development and device fabrication. One such area where NLO microscopy is widely used, is thin film materials. Thin film and nanosized materials with dimensions ranging from a few micrometers thickness down to atomically thin 2D materials, offer many innovative and intriguing features for applications in electronics, optics, and many other fields. In order to provide physical stability, these thin film and 2D materials are usually supported on substrates and handles, leading to multiple effects, such as thin film resonance and reflections at the thin film-substrate interface, that influence the genuine NLO signal from the sample. These effects are not present in bulk samples; therefore, it is natural to erroneously consider that these effects are also not present in thin film materials. This work tries to identify, quantify, and disentangle the parameters that influence nonlinear microscopy in thin film materials. To achieve this, Second Harmonic Generation (SHG) microscopy and Third Harmonic Generation (THG) microscopy were applied as two archetypal NLO processes. In particular the influence of thin film interference and phase matching on the signal strength is analyzed. Furthermore, key differences between three and four photon processes, such as the role of the Gouy-phase shift and the focal position is studied. This understanding can be extended to other three and four-photon processes, such as Coherent Anti-Stokes Raman Scattering (CARS).
Wedge-shaped samples were used for the experiments here, whose thickness was varied from bulk thickness down to approximately 50 nm. In both cases, it was found that the signal in the back reflection is the phase-matched co-propagating signal and not the counter-propagating signal which may naively be expected. It was also found that the signal from the surrounding material, and support does not affect the SH signal from the sample because the second-order nonlinear tensor is only available in non-centrosymmetric material. However, the signals from the surrounding do affect the TH signal from the sample because a third-order nonlinear tensor is available in every material. Furthermore, the THG signal from the thin film starts to vanish as the thickness increases, opposite to what happens in SHG. To back up the experimental findings, two numerical models were used. The first model is the numerical simulation, while the second is a semi-analytical paraxial model.
This thesis lays the groundwork for performing quantitative NLO 𝜇-spectroscopy on thin films and 2D materials, as it identifies and quantifies the impact of the corresponding sample and setup parameters on the NLO signal, in order to distinguish them from genuine material properties.:1. Introduction 1
2. Theoretical background 7
2.1. Non-linear optical polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. The non-linear susceptibility tensor . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Phase-matching and emission efficiency . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Nonlinear effects in focused Gaussian beams . . . . . . . . . . . . . . . . . . . 17
3. Methodology and principle 25
3.1. Lithium niobate (LN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Wedge preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3. Data generation & processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4. Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4. SHG in thin films 37
4.1. Coherence interaction length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1. Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2. Comparison of numerical and experimental data . . . . . . . . . . . . . 44
4.2. Thin film interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3. Influence of NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4. Reproducibility of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5. Detection depth of coherent interaction length oscillations . . . . . . . . . . . 54
4.6. Sensitivity to focus positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5. THG in thin films 57
5.1. Coherence interaction length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1. Quantifying the coherence interaction length . . . . . . . . . . . . . . . 61
5.2. Comparison of simulated and experimental data . . . . . . . . . . . . . . . . . 63
5.3. Thin film interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6. Conclusion and outlook 67
Appendices 69
A. Additional reflective layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B. Focus fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
List of Figures 78
List of Tables 79
Acronyms 82
Own Publications 93 / Die nichtlineare optische Mikroskopie (NLO) ist ein sehr leistungsfähiges und nichtinvasives Instrument zur Analyse der Materialeigenschaften, z. B. der lokalen Symmetrie, sowie zur Visualisierung ferroelektrischer Domänen und Domänenwände. Dadurch wird die NLO-Mikroskopie zu den wichtigsten Aufgaben bei der Materialentwicklung und der Herstellung von Bauelementen gehören. Ein solcher Bereich, in dem die NLO-Mikroskopie weit verbreitet ist, sind Dünnschichtmaterialien. Dünnschicht- und Nanomaterialien mit Abmessungen von wenigen Mikrometern Dicke bis hin zu atomar dünnen 2D-Materialien bieten viele innovative und faszinierende Eigenschaften für Anwendungen in der Elektronik, Optik und vielen anderen Bereichen. Um die physikalische Stabilität zu gewährleisten, werden diese Dünnschicht- und 2D-Materialien in der Regel auf Substraten und Handlegriffen getragen, was zu zahlreichen Effekten führt, wie z. B. Dünnschichtresonanz und Reflexionen an der Grenzfläche zwischen Dünnschicht und Substrat, die das echte Signal der Probe beeinflussen. Diese Effekte sind bei Bulk-Proben nicht vorhanden; daher ist es naheliegend, fälschlicherweise anzunehmen, dass diese Effekte auch bei Dünnschichtmaterialien nicht vorhanden sind. In dieser Arbeit wird versucht, die Parameter, die die nichtlineare Mikroskopie in Dünnschichtmaterialien beeinflussen, zu identifizieren, zu quantifizieren und zu entflechten. Zu diesem Zweck wurden die Mikroskopie der zweiten Harmonischen (SHG) und die Mikroskopie der dritten Harmonischen (THG) als zwei archetypische NLO-Prozesse untersucht. Insbesondere wird der Einfluss von Dünnschichtinterferenzen und Phasenanpassung auf die Signalstärke analysiert. Darüber hinaus werden die wichtigsten Unterschiede zwischen Drei- und Vier-Photonen-Prozessen, wie die Rolle der Gouy-Phasenverschiebung und der Fokusposition, untersucht. Dieses Verständnis kann auf andere Drei- und Vier-Photonen-Prozesse, wie z. B. die kohärente Anti-Stokes-Raman-Streuung (CARS), ausgeweitet werden.
Für die Experimente wurden keilförmige Proben verwendet, deren Dicke von der Bulk-Dicke bis hinunter zu etwa 50 nm variiert werden. In beiden Fällen wurde festgestellt, dass es sich bei dem Signal in der Rückreflexion um das phasenangepasste Mitausbreitungssignal handelt und nicht um das Gegenausbreitungssignal, das man naiverweise erwarten könnte. Es wurde auch festgestellt, dass das Signal aus der Umgebung das SH-Signal der Probe nicht beeinflusst, da der nichtlineare Tensor zweiter Ordnung nur in nicht-zentrosymmetrischem Material vorhanden ist. Die Signale aus der Umgebung beeinflussen jedoch das TH-Signal der Probe, da ein nichtlinearer Tensor dritter Ordnung in jedem Material vorhanden ist. Außerdem verschwindet das THG-Signal des dünnen Films mit zunehmender Dicke, anstatt wie bei SHG zuzunehmen. Um die experimentellen Ergebnisse zu untermauern, wurden zwei numerische Modelle verwendet. Bei dem ersten Modell handelt es sich um eine numerische Simulation, bei dem zweiten um ein halbanalytisches paraxiales Modell.
Diese Arbeit legt den Grundstein für die Durchführung quantitativer NLO 𝜇-Spektroskopie an dünnen Schichten und 2D-Materialien, da sie die Auswirkungen der entsprechenden Proben und Einrichtungsparameter auf das NLO-Signal identifiziert und quantifiziert, um sie von den echten Materialeigenschaften zu unterscheiden.:1. Introduction 1
2. Theoretical background 7
2.1. Non-linear optical polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. The non-linear susceptibility tensor . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Phase-matching and emission efficiency . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Nonlinear effects in focused Gaussian beams . . . . . . . . . . . . . . . . . . . 17
3. Methodology and principle 25
3.1. Lithium niobate (LN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Wedge preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3. Data generation & processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4. Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4. SHG in thin films 37
4.1. Coherence interaction length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1. Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2. Comparison of numerical and experimental data . . . . . . . . . . . . . 44
4.2. Thin film interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3. Influence of NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4. Reproducibility of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5. Detection depth of coherent interaction length oscillations . . . . . . . . . . . 54
4.6. Sensitivity to focus positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5. THG in thin films 57
5.1. Coherence interaction length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1. Quantifying the coherence interaction length . . . . . . . . . . . . . . . 61
5.2. Comparison of simulated and experimental data . . . . . . . . . . . . . . . . . 63
5.3. Thin film interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6. Conclusion and outlook 67
Appendices 69
A. Additional reflective layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B. Focus fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
List of Figures 78
List of Tables 79
Acronyms 82
Own Publications 93
|
2 |
Plataforma fotônica integrada e suas aplicações em estudos de quantum dots e processos biológicos / Integrated photonic platform and applications on quantum dots and biological processes studiesThomaz, André Alexandre de, 1980- 27 March 2013 (has links)
Orientador: Carlos Lenz Cesar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-22T08:41:16Z (GMT). No. of bitstreams: 1
Thomaz_AndreAlexandrede_D.pdf: 9291787 bytes, checksum: 9554ec1cfb5b3952506ff59b61aec5f9 (MD5)
Previous issue date: 2013 / Resumo: A comunidade científica concorda que há grandes chances que a próxima revolução tecnológica virá do controle dos processos biológicos. Grandes mudanças são esperadas, desde como produzimos alimentos até como combatemos as doenças. O controle dos processos biológicos nos permitirá produzir carne sintética para alimentação, produzir biocombustíveis retirando CO2 da atmosfera, produzir órgãos inteiros para transplante e combater de forma eficiente doenças como câncer, por exemplo. Está claro para o nosso grupo que para se obter esses resultados é necessário entender a biologia na sua unidade mais básica: a célula. A partir do entendimento e domínio das reações químicas que acontecem dentro da célula, e mais especificamente do controle do DNA, é que vamos conseguir atingir essas previsões e revolucionar a maneira como vivemos hoje. Com esse pensamento em mente, o objetivo dessa tese foi desenvolver uma plataforma fotônica integrada para estudos de processos celulares. Nós acreditamos que as ferramentas fotônicas são as ferramentas que preenchem todos os requisitos para os estudos de processos celulares, pois possibilitam o acompanhamento dos processos em tempo real sem causar dano as células. As técnicas presentes são: fluorescência excitada por 1 ou 2 fotons, geração de segundo ou terceiro harmônico, pinças ópticas, imagem por tempo de vida da fluorescência e "fluorescence correlation spectroscopy" (FCS). Nesta tese demonstramos como montar essa plataforma integrada e mostramos sua versatilidade com resultados em várias áreas da biologia e também para o estudo de quantum dots. / Abstract: The scientific community believes there is a great chance that the next technological revolution is coming from the control of biological processes. Great changes are expected, from the way we produce food up to the way we fight diseases. The control of biological processes will allow us to produce synthetic meat as food, to produce biofuels extracting CO2 directly from the atmosphere, to produce whole synthetic organs for transplant and to fight diseases, like cancer, in more efficient ways. It is clear to our group that in order to obtain these results it is necessary to understand biology from its most basic unity: the cell. Only from understanding and controlling chemical reactions inside a cell, and more specifically from the DNA controlling, it will be possible to achieve these predictions and cause a revolution in the way we live nowadays. Bearing these thoughts in mind, the objective of this thesis was to develop an integrated photonic platform for study of cellular processes. We believe that photonic tools are the only tools that fulfill all the requeriments for studies of cellular processes because they are capable to follow processes in real time without any damage to the cells. The techniques integrated are: 1 or 2 photon excited fluorescence, second or third harmonic generation, optical tweezers, fluorescence lifetime imaging and fluorescence correlation spectroscopy. In this thesis we demonstraded how to assemble this integrated plataform and we showed its versatility with results from different areas of biology and quantum dots. / Doutorado / Física / Doutor em Ciências
|
Page generated in 0.1065 seconds