• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 16
  • 9
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 30
  • 29
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role of cytokines in junction restructuring and germ cell migration inmammalian testes

Xia, Weiliang., 夏偉梁. January 2006 (has links)
published_or_final_version / abstract / Zoology / Doctoral / Doctor of Philosophy
32

Mechanisms of junctional restructuring at the sertoli-sertoli and sertoli-germ cell interfaces during spermatogenesis

Wang, Qiufan, Claire., 王秋帆. January 2008 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
33

Regulation of spermatogenesis in the microenvironment of the rat seminiferous epithelium: the roles of cellpolarity proteins

Wong, Wai-pung, Elissa., 黃懷芃. January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
34

Apoptotic markers in ejaculated human spermatozoa.

Brooks, Nicole Lisa January 2005 (has links)
The role of male germ cell death in spermatogenesis is an important one as it removes dysfunctional or genetically damaged germ cells and is necessary to maintain an optimal germ cell to Sertoli cell ratio. The formation of the bloodtestis barrier requires the elimination of excessive germ cells and a surge of germ cell apoptosis occurs prior to puberty regulating the ratio of germ cells to Sertoli cells. The aim of this study was to evaluate the presence of four apoptotic markers on sperm from patients with various grades of fertility using flow cytometry. Furthermore, any correlations between the apoptotic marker assays and the standard semen analysis results were identified. This study compares early and late parameters of apoptosis with morphological features in spermatozoa in the same samples. The three sample groups were identified as: teratozoospermic [G-pattern] (n=26), teratozoospermic [P-pattern] (n=98) and oligoteratozoospermic [Ppattern] (n=36). Standard semen analysis was conducted on the semen samples according to the WHO guidelines. Four apoptotic marker assays using flow cytometry was applied in this study to examine the apoptotic alterations in ejaculate sperm. These assays included the Annexin-V staining for the determination of phosphatidylserine exposure, APO-Direct to identify DNA fragmentation, caspase-3 to detect expression of this active protease during early apoptosis and Fas expression. For the Annexin-V and caspase-3 assays, statistically significant differences (P&lt / 0.05) were evident between the three groups. No significant differences (P&gt / 0.05) were found between the groups with respect to the APO-Direct assay. A significant difference (P&lt / 0.05) was found when comparing the teratozoospermic [G-pattern] group and the oligoteratozoospermic [P-pattern] group for the Fas assay. A strong positive correlation was evident between the Fas and the caspase-3 assays in the teratozoospermic [G-pattern] group. For the teratozoospermic [P-pattern group] the following positive correlations existed between the APO-Direct and the Fas assays, APO-Direct and caspase-3 assays and between caspase-3 and Fas assays. The only strong positive correlation was between the caspase-3 and APO-Direct assays in the oligoteratozoospermic [P-pattern] group. The presence of spermatozoa showing microscopic features resembling apoptosis has been identified in ten human ejaculate samples per sample group. Electron microscopy was used to identify morphological features of apoptosis in these human sperm samples. Classical apoptosis as observed in diploid cells could be identified in sperm and these included: loose fibrillarmicrogranular chromatin network, presence of vacuoles in the nuclear chromatin, membranous bodies within the vacuoles of the chromatin, partially disrupted nuclear membranes, plasma membrane protuberances and apoptotic bodies containing cytoplasmic vacuoles and dense masses. This study has confirmed that semen samples with abnormal semen parameters exhibit the presence of apoptotic markers in sperm. The identification of apoptotic markers on the sperm suggests that abnormalities occur during their developmental process, however, the exact mechanism thereof remains unclear. These findings may suggest that certain apoptotic markers may be an indicator of abnormal sperm function and possibly indicative of male infertility.
35

Fetal germ cell differentiation and the impact of the somatic cells

Cowan, Gillian January 2009 (has links)
Specification of a germ cell lineage and appropriate maturation are essential for the transfer of genetic information from one generation to the next. Germ cells form from pluripotent precursor cells that migrate into the gonadal ridge and undergo commitment to either the female or male lineage. In the fetal ovary, germ cells enter meiotic prophase I, then arrest at the diplotene stage; in the testis germ cells do not begin meiosis until puberty. Abnormal differentiation of germ cells can result in malignant transformation. Somatic cells play a key role in modulating the developmental fate of the germ cells. Research into germ cell development during fetal life has almost exclusively focused on studies in rodents, but we, and others, have reported several fundamental differences in the expression of germ cell specific markers in the human compared with the mouse. The studies described in this thesis have investigated germ cell-specific gene expression and the possible impact of the somatic cells during development. This was achieved by studying human fetal gonads obtained during the 1st and 2nd trimesters of pregnancy and through the use of both wild-type and mutant mouse ES cell lines. Studies on germ cells in the human fetal testis have extended the findings of others, and confirmed that germ cell populations at different stages of maturation co-exist in the human fetal testis, a situation that is in contrast to that in rodents. For example expression of M2A and AP2γ was restricted to the OCT4-positive gonocyte population, while VASA and NANOS1 were localised exclusively to the to the OCT4-negative prespermatogonia. DAZL was expressed in both populations. Analysis also revealed that both the gonocyte and prespermatogonial populations proliferate throughout the 2nd trimester. Recent studies have implicated retinoic acid (RA) in the control of meiotic entry in germ cells of the fetal mouse ovary. In this study we demonstrated for the first time that two genes implicated in the action of RA in mouse gonad, STRA8 and NANOS2, are also expressed in a similar sexspecific- manner in the human fetal gonads, and that the RA receptors are present in both somatic and germ cells suggesting that RA may regulate germ cell function in the human as well as the mouse. However, whilst the mesonephros appears to be the primary site of RA synthesis in the mouse our initial studies indicate that in the human the gonad itself may be a more likely site of RA biosynthesis. In the fetal mouse testis, RA is degraded by the enzyme Cyp26b1 present in the somatic cells and germ cells do not enter meiosis, our novel findings suggest that CYP26B1 is more abundant in the human fetal ovary than the testis, suggesting that meiotic entry may be controlled by an alternative signalling pathway in the human. One of the methods that can aid our understanding of somatic cell gene expression in the gonad is in vitro culture. To date, there have been no published reports of the successful in vitro culture of somatic cells from the human fetal testis. In the current study, populations of human somatic cells were dissociated and maintained in vitro and characterised. Analysis demonstrated that cells expressing mRNAs characteristic of Sertoli cells, Leydig cells and peritubular myoid (PTM) cells were present initially, but long-term culture resulted in downregulation in expression of mRNAs specific for Sertoli cells and Leydig cells, suggesting that these cells either failed to survive or underwent alterations to their phenotype. In contrast PTM/fibroblast cells proliferated in vitro and initially maintained androgen receptor expression. These cultures therefore hold promise for studies into the signalling or cell-cell interactions in testicular somatic cells especially those relevant to the PTM population. Several studies have claimed differentiation of putative germ cells from ES cells. In the current study, analysis of mouse ES cell lines has expanded on results showing that ES cells and early germ cells express a number of genes in common. Kit signalling was shown to be important for ES cell survival as they differentiate although expression of Kit was heterogeneous. We also demonstrated that ES cells that did not express Kit displayed a decreased expression of the early germ cell genes Blimp1, Fragilis and Stella, implicating Kit signalling in the control of germ cell-associated gene expression in ES cells. This may be important to future studies optimising germ cell derivation from ES cells. In conclusion, this study has demonstrated important differences in protein expression patterns in germ cells of the human fetal testis compared to the mouse, and has raised questions about whether the proposed mechanism controlling meiotic entry of germ cells in the mouse can be applied to the human. The establishment of a system for culturing human fetal gonadal somatic cells may lead to further understanding of gene expression and development in the human fetal testis, and data suggest that the Kit/Kitl signalling system may influence germ cell gene expression in mouse ES cells.
36

Integration of Germline and Somatic Variation in Tumor Data

Dewal, Ninad Pradeep January 2011 (has links)
During tumor inception and progression, culprit gene variants confer selective advantage to progenitor cancer cells, allowing them to outcompete normal cells and proliferate uncontrollably. Both regions of somatic amplification as well as germline DNA sequence changes may be variants that are positively selected by the tumor. Traditionally, these two variant classes have been studied independently. While many discoveries have been made in such a manner, independent examination of these classes possesses certain limitations. Integrated examination of these two classes holds the potential to reveal specific nucleotide alleles that are amplified in the tumor, which in turn may reveal proximal genes. We present methods that focus on such integration. The first, the Amplification Distortion Test (ADT), aims to detect nucleotide alleles that are selectively amplified across tumor samples. Motivated to apply ADT on nascent next generation sequencing data, we developed a novel Hidden Markov Model-based method - Haplotype Amplification in Tumor Sequences (HATS) - that analyzes tumor and matched normal sequence data, along with training data for linkage information, to infer amplified alleles and haplotypes in regions of copy number gain. HATS is designed to handle biases in read data as well as accommodate rare variants. We demonstrate that HATS infers the amplified alleles more accurately on simulated and real tumor data than does an alternate naïve approach, especially at low to intermediate sequence coverage levels, and when allele-specific biases or stromal contamination is present. We present these methods with the motivation that they may aid the cancer community in identifying novel causal or associated putative variants.
37

Genomic and machine-learning analysis of germline variants in cancer

Madubata, Chioma January 2018 (has links)
Cancer often develops from specific DNA alterations, and these cancer-associated mutations influence precision cancer treatment. These alterations can be specific to the tumor DNA (somatic mutations) or they can be heritable and present in normal and tumor DNA (germline mutations). Germline variants can affect how patients respond to therapy and can influence clinical surveillance of patients and their families. While identifying cancer-associated germline variants traditionally required studying families with inherited cancer predispositions, large-scale cancer sequencing cohorts enable alternative analysis of germline variants. In this dissertation, we develop and apply multiple strategies for analyzing germline DNA from cancer sequencing cohorts. First, we develop the Tumor-Only Boosting Identification framework (TOBI) to learn biological features of true somatic mutations and generate a classification model that identifies DNA variants with somatic characteristics. TOBI has high sensitivity in identifying true somatic variants across several cancer types, particularly in known driver genes. After predicting somatic variants with TOBI, we assess the identified somatic-like germline variants for known oncogenic germline variants and enrichment in biological pathways. We find germline and somatic variants inactivating the Fanconi anemia pathway in 11% of patients with bladder cancer. Finally, we investigate germline, diagnosis, and relapse variants in a large cohort of patients with pediatric acute lymphoblastic leukemia (ALL). Our somatic analysis captures known ALL driver genes, and we describe the sequential order of diagnosis and relapse mutations, including late events in NT5C2. We apply both the TOBI framework and guidelines American College of Medical Genetics and Genomics to identify potentially cancer-associated germline variants, and nominate nonsynonymous variants in TERT and ATM.
38

Investigating the role of PRDM14 in the avian germ cell lineage using a novel inducible DNA transposon system

Glover, James David January 2015 (has links)
Primordial germ cells (PGCs) are the precursors of the germ cell lineage that eventually differentiate into mature spermatozoa and oocytes. Although present throughout the animal kingdom, the specification and migration of PGCs differs widely between species. In vertebrates, avians are evolutionary divergent from mammals and therefore allow a comparative system in which to study germ cell development in higher organisms. Unlike mouse, PGCs can be isolated from the chicken embryo, expanded and cultured long term in vitro. Analysis of these cells showed that cultured chicken PGCs maintain the characteristics of their in vivo counterparts, including the expression of key germ cell specific markers and cell surface adhesion proteins, and thus, are an ideal system to study germ cell biology. Further characterisation revealed that an avian homologue of the zinc finger transcription factor PRDM14, essential for the specification of the mammalian germ cell lineage, was expressed in chicken PGCs. cPRDM14 was found to be expressed in PGCs in vitro and in vivo from early developmental stages until expression is lost by embryonic day 10 and subsequently re-expressed in the adult testis. The expression of cPRDM14 suggested that this gene may play a conserved role in the avian germ cell lineage. To investigate the function of cPRDM14, a novel single piggyBac transposon vector containing a reverse tetracycline activator protein and a tetracycline response element-regulated promoter was developed. Testing of the integrated transposon revealed that expression was tightly regulated and it was possible to conditionally express one gene product whilst simultaneously reducing the expression of a second gene, both in vitro and in vivo. This vector system was fully functional in PGCs, and was used to create transgenic founder chickens capable of having gene expression manipulated in germ cells at various developmental stages. Transgenic offspring were produced and the transgene was inducible at early developmental stages in the G1 animals. The un-induced transgene proved to be toxic to early embryos so a transgenic line of birds could not be produced. The inducible transposon was used to knockdown cPRDM14 expression in chicken PGCs. Knockdown of this gene led to reduced PGC numbers and increased cell death, both in vitro and in ovo. Expression of the pluripotency factor cNANOG was also significantly reduced which may explain the increased cell death. The knockdown of cPRDM14 also led to an increased susceptibility of PGCs to spontaneously de-differentiate to pluripotent embryonic germ cells (EGCs). cPRDM14 knockdown PGCs exhibited elevated levels of phosphorylated ERK, a target of the FGF signalling pathway. It was possible to prevent de-differentiation of the knockdown PGCs by removing ectopic FGF from the media. Furthermore, a sustained high level of FGF signalling in the media was sufficient to drive the de-differentiation of control PGCs to EGCs, suggesting that increased FGF signalling was key to the de-differentiation process. Extensive epigenetic remodelling of mouse PGCs occurs during embryonic development and PRDM14 was shown to be involved in this process. Chicken PGCs in vitro, contain several key histone modifications (H3K4me3, H3K9me2 and H3K27me3) and are 5-methyl cytosine (5-mC) positive. Immunohistochemical analysis of these markers in PGCs, at various stages during early embryonic development, suggests that these cells do not undergo the extensive epigenetic remodelling found in their mammalian counterparts. In contrast to the mouse germ cell lineage, knockdown of cPRDM14 in cultured PGCs had no noticeable effect on the epigenetic status of chicken PGCs. Together these results demonstrate that cPRDM14 is essential for the survival and maintenance of germ cell identity in chicken PGCs, but may not be critical for maintaining the epigenetic status of these cells.
39

A comparative study of male germ cell production in two Australian conilurine rodents, the plains rat, Pseudomys australis and hopping mouse, Notomys alexis

Peirce, Eleanor J. January 2000 (has links) (PDF)
Copies of author's previously published articles inserted. Bibliography: p. 199-254. In eutherian mammals, the size of the testes and number of spermatozoa produced and stored in the excurrent ducts vary widely between species, with the hydromyine rodents of Australia exhibiting a greater range of interspecific variation than any other closely related group of species. This study compared the efficiency of germ cell production and sperm storage capacity in the extra-testicular ducts of two arid zone species, the plains rat, Pseudomys australis, and the spinifex hopping mouse, Notomys alexis, that have vast differences in testes size and number of stored spermatozoa. Results are discussed.
40

Role of cytokines in junction restructuring and germ cell migration in mammalian testes

Xia, Weiliang. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.

Page generated in 0.0599 seconds