• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem bayesiana flexível em regressão com erros nas variáveis

Souza Filho, Nelson Lima de 06 December 2012 (has links)
Made available in DSpace on 2015-04-22T22:16:04Z (GMT). No. of bitstreams: 1 Nelson Lima de Souza Filho.pdf: 1556771 bytes, checksum: 33a38464a9de0ec3dca0da75c9c6b64e (MD5) Previous issue date: 2012-12-06 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In regression models, the classical normal assumption for the distribution of the measurement errors is often violated, masking some important features of the variability of the data. Some practical actions to overcome this problem, like transformations of the data, sometimes are not effective. In this work we propose a methodology to overcome this problem, in the context of multivariate linear regression with measurement errors. In these models, the covariate is unobservable and the researcher observes a surrogate variable. These measurements are made with an additive error. We extend the classical normal model, by modeling jointly the covariate and the measurement errors by a finite mixture of densities which are in a general family, accommodating skewness, heavy tails and multi-modality at the same time, allowing a degree of flexibility that can not be met by the normal model. We proceed Bayesian inference through a Gibbs-type algorithm. Some proposed models are compared with existing symmetrical models, using a modified DIC criterion, through the analysis of simulated and real data. / Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes da variabilidade dos dados. Algumas ações práticas para resolver esse problema, como transformações nos dados, revelam-se muitas vezes ineficazes. Neste trabalho apresentamos uma proposta para lidar com esta questão no contexto do modelo de regressão multivariada linear simples, quando a variável resposta e a variável regressora são observadas com erro aditivo o chamado modelo de regressão linear com erros nas variáveis. Em tais modelos, o pesquisador observa uma variável substituta em vez da covariável de interesse. Nós estendemos o modelo clássico normal, modelando a distribuição conjunta da covariável e dos erros aleatórios por uma mistura finita de densidades pertencentes a uma família de distribuições bem geral, acomodando ao mesmo tempo assimetria, caudas pesadas e multimodalidade, permitindo um grau de flexibilidade que não pode ser atingido pelo modelo normal. Para a parte de estimação desenvolvemos um algoritmo do tipo Gibbs para proceder estimação Bayesiana. Alguns modelos propostos foram comparados com modelos simétricos já existentes na literatura, utilizando um critério DIC modificado, através da análise de dados simulados e reais.

Page generated in 0.0615 seconds