Spelling suggestions: "subject:"crinite mixtures"" "subject:"cofinite mixtures""
1 |
Robust multivariate mixture regression modelsLi, Xiongya January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Weixing Song / In this dissertation, we proposed a new robust estimation procedure for two multivariate mixture regression models and applied this novel method to functional mapping of dynamic traits. In the first part, a robust estimation procedure for the mixture of classical multivariate linear regression models is discussed by assuming that the error terms follow a multivariate Laplace distribution. An EM algorithm is developed based on the fact that the multivariate Laplace distribution is a scale mixture of the multivariate standard normal distribution.
The performance of the proposed algorithm is thoroughly evaluated by some simulation and comparison studies. In the second part, the similar idea is extended to the mixture of linear mixed regression models by assuming that the random effect and the regression error jointly follow a multivariate Laplace distribution. Compared with the existing robust t procedure in the literature, simulation studies indicate that the finite sample performance of the proposed estimation procedure outperforms or is at least comparable to the robust t procedure. Comparing to t procedure, there is no need to determine the degrees of freedom, so the new robust estimation procedure is computationally more efficient than the robust t procedure. The ascent property for both EM algorithms are also proved. In the third part, the proposed robust method is applied to identify quantitative trait loci (QTL) underlying a functional mapping framework with dynamic traits of agricultural or biomedical interest.
A robust multivariate Laplace mapping framework was proposed to replace the normality assumption. Simulation studies show the proposed method is comparable to the robust multivariate t-distribution developed in literature and outperforms the normal procedure.
As an illustration, the proposed method is also applied to a real data set.
|
2 |
Mélanges de GLMs et nombre de composantes : application au risque de rachat en Assurance Vie / GLM mixtures and number of components : an application to the surrender risk in life insuranceMilhaud, Xavier 06 July 2012 (has links)
La question du rachat préoccupe les assureurs depuis longtemps notamment dans le contexte des contrats d'épargne en Assurance-Vie, pour lesquels des sommes colossales sont en jeu. L'émergence de la directive européenne Solvabilité II, qui préconise le développement de modèles internes (dont un module entier est dédié à la gestion des risques de comportement de rachat), vient renforcer la nécessité d'approfondir la connaissance et la compréhension de ce risque. C'est à ce titre que nous abordons dans cette thèse les problématiques de segmentation et de modélisation des rachats, avec pour objectif de mieux connaître et prendre en compte l'ensemble des facteurs-clefs qui jouent sur les décisions des assurés. L'hétérogénéité des comportements et leur corrélation ainsi que l'environnement auquel sont soumis les assurés sont autant de difficultés à traiter de manière spécifique afin d'effectuer des prévisions. Nous développons ainsi une méthodologie qui aboutit à des résultats très encourageants ; et qui a l'avantage d'être réplicable en l'adaptant aux spécificités de différentes lignes de produits. A travers cette modélisation, la sélection de modèle apparaît comme un point central. Nous le traitons en établissant les propriétés de convergence forte d'un nouvel estimateur, ainsi que la consistance d'un nouveau critère de sélection dans le cadre de mélanges de modèles linéaires généralisés / Insurers have been concerned about surrenders for a long time especially in Saving business, where huge sums are at stake. The emergence of the European directive Solvency II, which promotes the development of internal risk models (among which a complete unit is dedicated to surrender risk management), strengthens the necessity to deeply study and understand this risk. In this thesis we investigate the topics of segmenting and modeling surrenders in order to better know and take into account the main risk factors impacting policyholders’ decisions. We find that several complex aspects must be specifically dealt with to predict surrenders, in particular the heterogeneity of behaviours and their correlations as well as the context faced by the insured. Combining them, we develop a methodology that seems to provide good results on given business lines, and that moreover can be adapted for other products with little effort. However the model selection step suffers from a lack of parsimoniousness: we suggest to use another criteria based on a new estimator, and prove its consistant properties in the framework of mixtures of generalized linear models
|
3 |
Análise Bayesiana de modelos de mistura finita com dados censurados / Bayesian analysis of finite mixture models with censored dataMelo, Brian Alvarez Ribeiro de 21 February 2017 (has links)
Misturas finitas são modelos paramétricos altamente flexíveis, capazes de descrever diferentes características dos dados em vários contextos, especialmente na análise de dados heterogêneos (Marin, 2005). Geralmente, nos modelos de mistura finita, todas as componentes pertencem à mesma família paramétrica e são diferenciadas apenas pelo vetor de parâmetros associado a essas componentes. Neste trabalho, propomos um novo modelo de mistura finita, capaz de acomodar observações censuradas, no qual as componentes são as densidades das distribuições Gama, Lognormal e Weibull (mistura GLW). Essas densidades são reparametrizadas, sendo reescritas em função da média e da variância, uma vez que estas quantidades são mais difundidas em diversas áreas de estudo. Assim, construímos o modelo GLW e desenvolvemos a análise de tal modelo sob a perspectiva bayesiana de inferência. Essa análise inclui a estimação, através de métodos de simulação, dos parâmetros de interesse em cenários com censura e com fração de cura, a construção de testes de hipóteses para avaliar efeitos de covariáveis e pesos da mistura, o cálculo de medidas para comparação de diferentes modelos e estimação da distribuição preditiva de novas observações. Através de um estudo de simulação, avaliamos a capacidade da mistura GLW em recuperar a distribuição original dos tempos de falha utilizando testes de hipóteses e estimativas do modelo. Os modelos desenvolvidos também foram aplicados no estudo do tempo de seguimento de pacientes com insuficiência cardíaca do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Nesta aplicação, os resultados mostram uma melhor adequação dos modelos de mistura em relação à utilização de apenas uma distribuição na modelagem dos tempos de seguimentos. Por fim, desenvolvemos um pacote para o ajuste dos modelos apresentados no software R. / Finite mixtures are highly flexible parametric models capable of describing different data features and are widely considered in many contexts, especially in the analysis of heterogeneous data (Marin, 2005). Generally, in finite mixture models, all the components belong to the same parametric family and are only distinguished by the associated parameter vector. In this thesis, we propose a new finite mixture model, capable of handling censored observations, in which the components are the densities from the Gama, Lognormal and Weibull distributions (the GLW finite mixture). These densities are rewritten in such a way that the mean and the variance are the parameters, since the interpretation of such quantities is widespread in various areas of study. In short, we constructed the GLW model and developed its analysis under the bayesian perspective of inference considering scenarios with censorship and cure rate. This analysis includes the parameter estimation, wich is made through simulation methods, construction of hypothesis testing to evaluate covariate effects and to assess the values of the mixture weights, computatution of model adequability measures, which are used to compare different models and estimation of the predictive distribution for new observations. In a simulation study, we evaluated the feasibility of the GLW mixture to recover the original distribution of failure times using hypothesis testing and some model estimated quantities as criteria for selecting the correct distribution. The models developed were applied in the study of the follow-up time of patients with heart failure from the Heart Institute of the University of Sao Paulo Medical School. In this application, results show a better fit of mixture models, in relation to the use of only one distribution in the modeling of the failure times. Finally, we developed a package for the adjustment of the presented models in software R.
|
4 |
Análise Bayesiana de modelos de mistura finita com dados censurados / Bayesian analysis of finite mixture models with censored dataBrian Alvarez Ribeiro de Melo 21 February 2017 (has links)
Misturas finitas são modelos paramétricos altamente flexíveis, capazes de descrever diferentes características dos dados em vários contextos, especialmente na análise de dados heterogêneos (Marin, 2005). Geralmente, nos modelos de mistura finita, todas as componentes pertencem à mesma família paramétrica e são diferenciadas apenas pelo vetor de parâmetros associado a essas componentes. Neste trabalho, propomos um novo modelo de mistura finita, capaz de acomodar observações censuradas, no qual as componentes são as densidades das distribuições Gama, Lognormal e Weibull (mistura GLW). Essas densidades são reparametrizadas, sendo reescritas em função da média e da variância, uma vez que estas quantidades são mais difundidas em diversas áreas de estudo. Assim, construímos o modelo GLW e desenvolvemos a análise de tal modelo sob a perspectiva bayesiana de inferência. Essa análise inclui a estimação, através de métodos de simulação, dos parâmetros de interesse em cenários com censura e com fração de cura, a construção de testes de hipóteses para avaliar efeitos de covariáveis e pesos da mistura, o cálculo de medidas para comparação de diferentes modelos e estimação da distribuição preditiva de novas observações. Através de um estudo de simulação, avaliamos a capacidade da mistura GLW em recuperar a distribuição original dos tempos de falha utilizando testes de hipóteses e estimativas do modelo. Os modelos desenvolvidos também foram aplicados no estudo do tempo de seguimento de pacientes com insuficiência cardíaca do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Nesta aplicação, os resultados mostram uma melhor adequação dos modelos de mistura em relação à utilização de apenas uma distribuição na modelagem dos tempos de seguimentos. Por fim, desenvolvemos um pacote para o ajuste dos modelos apresentados no software R. / Finite mixtures are highly flexible parametric models capable of describing different data features and are widely considered in many contexts, especially in the analysis of heterogeneous data (Marin, 2005). Generally, in finite mixture models, all the components belong to the same parametric family and are only distinguished by the associated parameter vector. In this thesis, we propose a new finite mixture model, capable of handling censored observations, in which the components are the densities from the Gama, Lognormal and Weibull distributions (the GLW finite mixture). These densities are rewritten in such a way that the mean and the variance are the parameters, since the interpretation of such quantities is widespread in various areas of study. In short, we constructed the GLW model and developed its analysis under the bayesian perspective of inference considering scenarios with censorship and cure rate. This analysis includes the parameter estimation, wich is made through simulation methods, construction of hypothesis testing to evaluate covariate effects and to assess the values of the mixture weights, computatution of model adequability measures, which are used to compare different models and estimation of the predictive distribution for new observations. In a simulation study, we evaluated the feasibility of the GLW mixture to recover the original distribution of failure times using hypothesis testing and some model estimated quantities as criteria for selecting the correct distribution. The models developed were applied in the study of the follow-up time of patients with heart failure from the Heart Institute of the University of Sao Paulo Medical School. In this application, results show a better fit of mixture models, in relation to the use of only one distribution in the modeling of the failure times. Finally, we developed a package for the adjustment of the presented models in software R.
|
5 |
Modelagem bayesiana flexível em regressão com erros nas variáveisSouza Filho, Nelson Lima de 06 December 2012 (has links)
Made available in DSpace on 2015-04-22T22:16:04Z (GMT). No. of bitstreams: 1
Nelson Lima de Souza Filho.pdf: 1556771 bytes, checksum: 33a38464a9de0ec3dca0da75c9c6b64e (MD5)
Previous issue date: 2012-12-06 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In regression models, the classical normal assumption for the distribution of the measurement
errors is often violated, masking some important features of the variability of
the data. Some practical actions to overcome this problem, like transformations of the
data, sometimes are not effective.
In this work we propose a methodology to overcome this problem, in the context of
multivariate linear regression with measurement errors. In these models, the covariate is
unobservable and the researcher observes a surrogate variable. These measurements are
made with an additive error. We extend the classical normal model, by modeling jointly
the covariate and the measurement errors by a finite mixture of densities which are in
a general family, accommodating skewness, heavy tails and multi-modality at the same
time, allowing a degree of flexibility that can not be met by the normal model.
We proceed Bayesian inference through a Gibbs-type algorithm. Some proposed
models are compared with existing symmetrical models, using a modified DIC criterion,
through the analysis of simulated and real data. / Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição
dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes
da variabilidade dos dados. Algumas ações práticas para resolver esse problema,
como transformações nos dados, revelam-se muitas vezes ineficazes.
Neste trabalho apresentamos uma proposta para lidar com esta questão no contexto do
modelo de regressão multivariada linear simples, quando a variável resposta e a variável
regressora são observadas com erro aditivo o chamado modelo de regressão linear com
erros nas variáveis. Em tais modelos, o pesquisador observa uma variável substituta em
vez da covariável de interesse. Nós estendemos o modelo clássico normal, modelando
a distribuição conjunta da covariável e dos erros aleatórios por uma mistura finita de
densidades pertencentes a uma família de distribuições bem geral, acomodando ao mesmo
tempo assimetria, caudas pesadas e multimodalidade, permitindo um grau de flexibilidade
que não pode ser atingido pelo modelo normal.
Para a parte de estimação desenvolvemos um algoritmo do tipo Gibbs para proceder
estimação Bayesiana. Alguns modelos propostos foram comparados com modelos simétricos
já existentes na literatura, utilizando um critério DIC modificado, através da análise
de dados simulados e reais.
|
6 |
Misturas finitas de misturas de escala skew-normal / Mixtures modelling using scale mixtures of skew-normal distributionBasso, Rodrigo Marreiro 03 December 2009 (has links)
Orientador: Victor Hugo Lachos Davila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T07:03:11Z (GMT). No. of bitstreams: 1
Basso_RodrigoMarreiro_M.pdf: 3130269 bytes, checksum: 85e95beb812a4ec069f39f8b9c79681a (MD5)
Previous issue date: 2009 / Resumo: Nesse trabalho será considerada uma classe flexível de modelos usando misturas finitas de distribuições da classe de misturas de escala skew-normal. O algoritmo EM é empregado para se obter estimativas de máxima verossimilhança de maneira iterativa, sendo discutido com maior ênfase para misturas de distribuições skew-normal, skew-t, skew-slash e skew-normal contaminada. Também será apresentado um método geral para aproximar a matrix de covariância assintótica das estimativas de máxima verossimilhança. Resultados obtidos da análise de quatro conjuntos de dados reais ilustram a aplicabilidade da metodologia proposta / Abstract: In this work we consider a flexible class of models using finite mixtures of multivariate scale mixtures of skew-normal distributions. An EM-type algorithm is employed for iteratively computing maximum likelihood estimates and this is discussed with emphasis on finite mixtures of skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. A general information-based method for approximating the asymptotic covariance matrix of the maximum likelihood estimates is also presented. Results obtained from the analysis of four real data sets are reported illustrating the usefulness of the proposed methodology / Mestrado / Mestre em Estatística
|
Page generated in 0.044 seconds