Spelling suggestions: "subject:"gibbs point process"" "subject:"hibbs point process""
1 |
Modelování náhodných mozaik / Random tessellations modelingSeitl, Filip January 2018 (has links)
The motivation for this work comes from physics, when dealing with microstructures of polycrystalline materials. An adequate probabilistic model is a three-dimensional (3D) random tessellation. The original contribution of the author is dealing with the Gibbs-Voronoi and Gibbs- Laguerre tessellations in 3D, where the latter model is completely new. The energy function of the underlying Gibbs point process reflects interactions between geometrical characteristics of grains. The aim is the simulation, parameter estimation and degree-of-fit testing. Mathematical background for the methods is described and numerical results based on simulated data are presented in the form of tables and graphs. The interpretation of results confirms that the Gibbs-Laguerre model is promising for further investigation and applications.
|
2 |
Modélisation de la dispersion à grande échelle : évolution de laire de répartition passée et future du hêtre commun (Fagus sylvatica) en réponse aux changements climatiques / Dispersal modelling at large scale : evolution of past and future European beech distribution (Fagus sylvatica) in response to climate changesSaltre, Frédérik 14 December 2010 (has links)
Le changement climatique actuel est tellement rapide que la plupart des espèces ligneuses tempérées européennes telles que Fagus sylvatica risquent de ne pouvoir s'adapter, ni migrer suffisamment pour répondre à ce changement. La plupart des modèles simulant l'aire de répartition potentielle de la végétation en fonction du climat considèrent une dispersion « illimitée » ou « nulle » ce qui rend difficile l'évaluation de l'importance de la dispersion par rapport au climat dans la dynamique de la végétation. Ce travail de thèse a pour objectif d'intégrer à un modèle d'aire de répartition basé sur les processus (Phenofit) un modèle phénoménologique de dispersion (modèle de dispersion de Gibbs) dans le but de dissocier l'effet du climat de l'effet de la dispersion dans la réponse de Fagus sylvatica aux changements climatiques en Europe, (i) pendant la recolonisation postglaciaire de 12000 ans BP à l'actuel et (ii) pendant le 21ème siècle. Nos résultats montrent un fort impact de la dispersion associé à un effet également important de la localisation des refuges glaciaires sur la recolonisation postglaciaire du hêtre comparé à l'effet du climat de 12000 ans BP à l'actuel. En revanche, les capacités de dispersion du hêtre ne lui permettent pas d'occuper la totalité de son aire potentielle notamment au nord de l'Europe d'ici 2100. Cette faible colonisation vers le nord de l'Europe associée à de fortes extinctions au sud de son aire de répartition causées par l'augmentation du stress hydrique conduit à une diminution drastique de l'aire de répartition du hêtre d'ici la fin du 21ème siècle. / Current climate change is so fast that some temperate tree species, like Fagus sylvatica, could not adapt nor migrate fast enough to tract their climatic niche. Most models simulating the potential distribution of vegetation as a function of climate consider unlimited or "null" dispersal, which doesn't allow assessing the importance of dispersal compared to climate in the dynamics of the vegetation. In this thesis, we integrate into a process-based species distribution model (Phenofit), a phenomenological model of dispersal (Gibbs-based model) in order to disentangle the effects of climate and dispersal in the response of Fagus sylvatica to climate change in Europe, (i) during the postglacial recolonization from 12000 years BP to present, (ii) during the 21st century. Our results show strong impact of dispersal associated with a strong effect of glacial refugees location on the beech postglacial recolonization, compared to the effect of climat e since 12000 years. Nevertheless, beech dispersal abilities are not sufficient to allow the colonization of newly suitable areas in northern Europe by 2100. This low colonization rate in Northern Europe in addition to a high extinction rate in Southern Europe due to increasing drought lead to a drastic reduction of beech distribution by the end of the 21st century.
|
3 |
Spatial patterns and processes in a regenerating mangrove forestPranchai, Aor 13 July 2015 (has links) (PDF)
The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates which exceed the average pace of global deforestation by three to five times. Our knowledge of the underlying processes of mangrove forest regeneration is too limited in order to find suitable techniques for the restoration of degraded mangrove areas. The general objective of my dissertation was to improve mangrove restoration by understanding regeneration processes and local plant-plant interaction in a regenerating Avicennia germinans forest.
The study was conducted in a high-shore mangrove forest area on the Ajuruteua peninsula, State of Para, Northern Brazil. The dwarf forest consisting of shrub-like trees is recovering from a stand-replacing event caused by a road construction in 1974 which interrupted the tidal inundation of the study area. Consequently, infrequent inundation and high porewater salinity limit tree growth and canopy closure.
All trees and seedlings were stem-mapped in six 20 m x 20 m plots which were located along a tree density gradient. Moreover, height, crown extent, basal stem diameter of trees were measured. The area of herbaceous ground vegetation and wood debris were mapped as well. The mapped spatial distribution of trees, seedlings and covariates was studied using point pattern analysis and point process models, such as Gibbs and Thomas point process, in order to infer underlying ecological processes, such as seed dispersal, seedling establishment, tree recruitment and tree interaction.
In the first study (chapter 2), I analyzed the influence of abiotic and biotic factors on the seedling establishment and tree recruitment of A. germinans during the recolonization of severely degraded mangrove sites using point process modeling. Most seedlings established adjacent to adult trees especially under their crown cover. Moreover, seedling density was higher within patches of the herbaceous salt-marsh plants Blutaparon portulacoides and Sesuvium portulacastrum than in uncovered areas. The higher density of recruited A. germinans trees in herb patches indicated that ground vegetation did not negatively influence tree development of A. germinans. In addition, tree recruitment occurred in clusters. Coarse wood debris had no apparent effect on either life stage. These results confirm that salt-marsh vegetation acts as the starting point for mangrove recolonization and indicate that the positive interaction among trees accelerates forest regeneration.
In the second study (chapter 3), I analyzed how intraspecific interaction among A. germinans trees determines their growth and size under harsh environmental conditions. Interaction among a higher number of neighboring trees was positively related to the development of a focal tree. However, tree height, internode length and basal stem diameter were only positively associated in low-density forest stands (1.2 trees m-2) and not in forest stands of higher tree density (2.7 trees m-2). These results indicated a shift from facilitation, i.e. a positive effect of tree interaction, towards a balance between facilitation and competition.
In the third study (chapter 4), I used point process modeling and the individual-based model mesoFON to disentangle the impact of regeneration and interaction processes on the spatial distribution of seedlings and trees. In this infrequently inundated area, propagules of A. germinans are only dispersed at a maximum distance of 3 m from their parent tree. Furthermore, there is no evidence that the following seedling establishment is influenced by trees. I was able to differentiate positive and negative tree interactions simulated by the mangrove model mesoFON regardless of dispersal processes based on static tree size information using the mark-correlation function.
The results of this dissertation suggest that mangrove forest regeneration in degraded areas is a result of facilitative and not competitive interactions among mangrove trees, seedling and herbaceous vegetation. This has important implications for the restoration of degraded mangrove forest. Degraded mangrove areas are usually restored by planting a high number of evenly spaced seedlings. However, high costs constrain this approach to small areas. Assisting natural regeneration could be a less costly alternative. Herbaceous vegetation plays a crucial role in forest recolonization by entrapping propagules and possibly ameliorating harsh environmental conditions. So far only competition among mangrove trees has been considered during restoration. However, facilitative tree interactions could be utilized by planting seedling clusters in order to assist natural regeneration instead of planting seedlings evenly-spaced over large areas.
This dissertation also showed that point pattern analysis and point process modeling can enable forest ecologists to describe the spatial distribution of trees as well as to infer underlying ecological processes.
|
4 |
Spatial patterns and processes in a regenerating mangrove forestPranchai, Aor 21 April 2015 (has links)
The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates which exceed the average pace of global deforestation by three to five times. Our knowledge of the underlying processes of mangrove forest regeneration is too limited in order to find suitable techniques for the restoration of degraded mangrove areas. The general objective of my dissertation was to improve mangrove restoration by understanding regeneration processes and local plant-plant interaction in a regenerating Avicennia germinans forest.
The study was conducted in a high-shore mangrove forest area on the Ajuruteua peninsula, State of Para, Northern Brazil. The dwarf forest consisting of shrub-like trees is recovering from a stand-replacing event caused by a road construction in 1974 which interrupted the tidal inundation of the study area. Consequently, infrequent inundation and high porewater salinity limit tree growth and canopy closure.
All trees and seedlings were stem-mapped in six 20 m x 20 m plots which were located along a tree density gradient. Moreover, height, crown extent, basal stem diameter of trees were measured. The area of herbaceous ground vegetation and wood debris were mapped as well. The mapped spatial distribution of trees, seedlings and covariates was studied using point pattern analysis and point process models, such as Gibbs and Thomas point process, in order to infer underlying ecological processes, such as seed dispersal, seedling establishment, tree recruitment and tree interaction.
In the first study (chapter 2), I analyzed the influence of abiotic and biotic factors on the seedling establishment and tree recruitment of A. germinans during the recolonization of severely degraded mangrove sites using point process modeling. Most seedlings established adjacent to adult trees especially under their crown cover. Moreover, seedling density was higher within patches of the herbaceous salt-marsh plants Blutaparon portulacoides and Sesuvium portulacastrum than in uncovered areas. The higher density of recruited A. germinans trees in herb patches indicated that ground vegetation did not negatively influence tree development of A. germinans. In addition, tree recruitment occurred in clusters. Coarse wood debris had no apparent effect on either life stage. These results confirm that salt-marsh vegetation acts as the starting point for mangrove recolonization and indicate that the positive interaction among trees accelerates forest regeneration.
In the second study (chapter 3), I analyzed how intraspecific interaction among A. germinans trees determines their growth and size under harsh environmental conditions. Interaction among a higher number of neighboring trees was positively related to the development of a focal tree. However, tree height, internode length and basal stem diameter were only positively associated in low-density forest stands (1.2 trees m-2) and not in forest stands of higher tree density (2.7 trees m-2). These results indicated a shift from facilitation, i.e. a positive effect of tree interaction, towards a balance between facilitation and competition.
In the third study (chapter 4), I used point process modeling and the individual-based model mesoFON to disentangle the impact of regeneration and interaction processes on the spatial distribution of seedlings and trees. In this infrequently inundated area, propagules of A. germinans are only dispersed at a maximum distance of 3 m from their parent tree. Furthermore, there is no evidence that the following seedling establishment is influenced by trees. I was able to differentiate positive and negative tree interactions simulated by the mangrove model mesoFON regardless of dispersal processes based on static tree size information using the mark-correlation function.
The results of this dissertation suggest that mangrove forest regeneration in degraded areas is a result of facilitative and not competitive interactions among mangrove trees, seedling and herbaceous vegetation. This has important implications for the restoration of degraded mangrove forest. Degraded mangrove areas are usually restored by planting a high number of evenly spaced seedlings. However, high costs constrain this approach to small areas. Assisting natural regeneration could be a less costly alternative. Herbaceous vegetation plays a crucial role in forest recolonization by entrapping propagules and possibly ameliorating harsh environmental conditions. So far only competition among mangrove trees has been considered during restoration. However, facilitative tree interactions could be utilized by planting seedling clusters in order to assist natural regeneration instead of planting seedlings evenly-spaced over large areas.
This dissertation also showed that point pattern analysis and point process modeling can enable forest ecologists to describe the spatial distribution of trees as well as to infer underlying ecological processes.
|
Page generated in 0.0683 seconds