• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 46
  • 33
  • 25
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • 13
  • 8
  • 6
  • 5
  • Tagged with
  • 561
  • 129
  • 79
  • 71
  • 68
  • 63
  • 60
  • 60
  • 50
  • 50
  • 42
  • 42
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Glacial isostatic adjustment modelling of the Coast Mountains of British Columbia

Lauch, Maximilian 20 April 2022 (has links)
The Coast Mountains in British Columbia contain over 10,000 km2 of glacial ice. While these glaciers have lost significant mass since the Little Ice Age (LIA; around 300 years before present), the melting rate has significantly increased over the past decade, likely due to the effects of climate change. The purpose of this study was to develop an approach to quantifying the isostatic response to LIA glacier change and investigate how it can further our understanding of the Earth’s rheology through GIA modelling. The Coast Mountains in southwestern British Columbia were chosen due to their significant ice mass loss since the LIA, their location in a tectonically active region, which includes a volcanic arc, and the presence of information of vertical land motion. The GIA models in this study use a wide range of Earth rheological parameters that are then constrained through comparison to observations of vertical land motion in the region. The study used available Global Navigation Satellite System (GNSS) vertical velocity data as the observable from seven GNSS sites in southwestern BC, using a combination of Western Canada Deformation Array (WCDA) and British Columbia Active Control System (BCACS) GNSS stations. Raw data were analyzed using the GIPSY 6.4 software following the Precise Point Positioning processing strategy. Two ice load histories were developed based on gridded estimates of present-day ice thicknesses in the region in order to simulate the change in the surface loading as the glacial ice mass fluctuates over time. Ice Load A used a simple uniform thickness change profile over 3 time-steps based on extrapolated modern melt rates. Ice Load B is more complex and utilized a published profile of glacier change through time basing the magnitude of volume changes on the volume-area scaling relationship with a range of coefficient values. This allowed for a range of ice change magnitudes to be tested. The Earth models used were spherically symmetric Preliminary Reference Earth Models (PREM). Their viscosity structure is based on VM5a for the transition zone and lower mantle, but with variable lithospheric thickness and asthenospheric viscosity. The goodness of fit for the modeled velocities were compared to the observed velocities using a normalized RMS (NRMS) statistic. Ice Load A models had a best fitting lithospheric thickness of 50 km and an asthenospheric viscosity of 2×1019 Pa s. For all variations of Ice Load B, the best fitting model parameters had lithospheric thicknesses ranging from 45 km to 55 km and asthenospheric viscosities between 6×1018 Pa s and 3×1019 Pa s. Corrected GNSS vertical velocity observations were tested to check the effects of interseismic vertical signal and assumed residual GIA from the Cordilleran Ice Sheet. However, the corrections did not improve the NRMS fit. Overall, the asthenospheric viscosity results from this study overlap with all the ranges found in the previous studies while lithospheric thicknesses agree with some past studies. The results of this study generally align with previous work and the current understanding of the Coast Mountains region and can inform a future round of sea-level projections for the region as ice mass loss continues in the Coast Mountains. This study serves to further refine constraints on Earth rheology and can be used to guide future work on GIA in the region. / Graduate
212

Late Pleistocene Glacial Chronology of the Western Ahklun Mountains, Southwestern Alaska

Briner, Jason P. 01 May 1998 (has links)
New glacial mapping and 35 cosmogenic 36Cl surface exposure ages, the first ever reported from Alaska , constrain the extent and timing of late Pleistocene glacial fluctuations in the western Ahklun Mountain s, southwe stern Alaska. Morphometric and soil relativeage data characterize two main drift units deposited during the Arolik Lake and Klak Creek glaciations , named herein. During the Arolik Lake glaciation (early Wisconsin), outlet glaciers emanated from an ice cap over the central portion of the Ahklun Mountains and deposited moraines at or beyond the modern coast. These moraines have slope angles averaging about 11° and crests averaging about 35 m wide . Four moraine boulders deposited during this glaciation have a weighted mean surface exposure age of 53.6 ± 2.0 36Cl ka. During the Klak Creek glaciation (late Wisconsin), ice-cap outlet glaciers deposited moraines 20-80 km up-valley from Arolik Lake moraines. Valley glaciers expanded from high massifs that fringe the major river valleys in the western Ahklun Mountains and terminated independently from the relatively restricted ice-cap outlet glaciers. Moraines deposited during the Klak Creek glaciation have steeper slopes (mean = -18°) and sharper crests (mean= about 17 m) than do Arolik Lake moraines. Twenty-eight 36Cl ages were obtained from six Klak Creek moraines from three valleys and reveal two phases of glaciation during the late Wisconsin, one from about 25 to 23 36Cl ka, and another from 19 to 15 36Cl ka. An ice-cap outlet glacier moraine underlies a valley glacier terminal moraine, both of which have ages of 18-19 36Cl ka, and indicates that the ice-cap outlet glacier had retreated from its maximum position shortly before the valley glacier reached its maximum position. Equilibrium-line altitudes (ELAs) for reconstructed Klak Creek valley glaciers average about 400 m, which is only about 200 m below the estimated modem altitude. The restricted extent of Klak Creek glaciers might reflect a lack of available moisture as sea ice covered the Bering Sea during the peak of the last global glacial maximum. When compared to the marine oxygen-isotope record, the timing of glacier advances in the western Ahklun Mountains indicates that glaciers responded to both regional and global climate changes.
213

Pre-late-Wisconsin Glacial History of the Naknek River Valley, Southwestern Alaska

Thompson, Caleb H. 01 May 1996 (has links)
The lower Naknek River in southwestern Alaska dissects thick (~20m) exposures of Pleistocene glaciogenic sediments. The stratigraphy of the deposits and their physical, geochemical, mineralogical, and geochronological properties were studies to determine the number and timing of glacial advances represented. Multivariate data reduction methods (cluster and principal component analyses) were applied to the data to differentiate diamicton beds. The results show a clear separation of drift of the lower Naknek River valley from drift of northern Bristol Bay and from younger, moraine-comprising drift up valley. Within the Nak:nek River valley, however, there is no stratigraphic trend to the clusterings. The similarity between diamicton units suggests that most of the drift in the Naknek River valley is from one advance, or that the clustering methods were not sensitive to detect multiple advances from overlapping source areas. At South Naknek beach, a marine-lag horizon separates two diamictons. Based on amino acid (D/L) ratios in fossil molluscs, this lag is correlated with the last interglacial (-125 ka). The underlying diamicton records an advance> 125 ka. A thermoluminescence age estimate on a lava­baked diamicton at Telephone Point provides a minimum age on a lower diamicton of 250 ± 20 ka. The age of the overlying, regionally extensive drift sheet is constrained by an optically stimulated luminescence age, amino acid ratios, and radiocarbon ages from drift at Halfmoon Bay. These data, together with sedimentologic evidence for glacial-estuarine conditions, suggest that ice advanced into a tidally influenced estuary during a time of high (about + 12 m) relative sea level about 80 ka. Mak Hill and Johnston Hill, ridges previously mapped as moraines, are reinterpreted as ice-thrust ridges, and may not represent stable ice margins. The terms "Mak Hill drift" and "Johnston Hill drift" should be abandoned as discernable lithostratigraphic and climatological units, because they may not represent unique glacier advances, and because they appear to be lithostratigraphically indistinguishable.
214

Late Quaternary Glacial Geology, Shoreline Morphology, and Tephrochronology of the lliamna/Naknek/Brooks Lake Area, Southwestern Alaska

Stilwell, Karen B. 01 May 1995 (has links)
This study focuses on the late-Wisconsin Brooks Lake glaciation, lake-level fluctuations, and volcanic deposits in the lliarnna/Naknek/Brooks Lake area on the northern Alaska Peninsula, southwestern Alaska. The Brooks Lake glaciation consists of five stades, from youngest to oldest: Kvichak, Uiarnna, Newhalen, Iliuk, and Ukak. This thesis reassigns the type Mak Hill moraine to a pre-late-Wisconsin glaciation, and considers the moraine enclosing Naknek Lake an early-late-Wisconsin deposit correlative to either the Kvichak stade, lliarnna stade, or both. The presence in the Iliamna Lake valley, and the absence in the Naknek Lake valley of a two-fold earliest-late-Wisconsin Kvichak/Iliamna glacial sequence suggest that the two glacial systems responded differently to climate change, or glacier/bed dynamics due to differing ice sources and glacier configurations. Plant macrofossils dated at 26,155 ± 285 I4C yr BP afford a new maximum-limiting age on the type Kvichak moraine. Slope angles on the type Kvichak and Iliamna moraines are less steep (~11-15°) than on younger Newhalen, lliuk, and Ukak moraines (~18-20° ), indicating that a considerable length of time separated the Iliamna and Newhalen stades. Correlation of this time-stratigraphic marker with other better dated Alaskan glacial sequences suggests that the interstadial occurred -13-14 ka. Following late-Wisconsin de glaciation of the Iliamna and Naknek lake basins, lake levels lowered, creating a flight of wave-cut terraces. Horizontal terraces, formed during latest-Wisconsin/early-Holocene time, at ~40 m above Iliamna Lake, and ~15 and ~30 m above Naknek Lake, suggest that these shorelines are not tilted as a result of glacial isostatic rebound or regional tectonism. The most prominent terraces above both lakes lay about halfway between the highest terrace and present-day lake level. If these terraces are correlative, then this indicates some climate control on lake-level fluctuations. Electron-microprobe analysis of six late-Pleistocene tephra samples allows five samples to be correlated with latest-Pleistocene Lethe tephra, and extends the Lethe ash plume ~125 km westward, and ~150 km northwestward of its presumed source area. Analysis of four early-Holocene black tephras fails to support any correlations, suggesting that there are multiple black tephras in the area. Ash C, a tricolored ash, consists of more than one chemically distinct tephra, and there is little consistency between color zones of the ash at different sites.
215

The Neoglacial History of Mt. Thielsen, Southern Oregon Cascades

Lafrenz, Martin Dietrich 08 June 2001 (has links)
Little Ice Age (LIA) deposits are recognized on Mt. Tbielsen, southern Oregon Cascades (43° 9' N, 122° 3' W), based on particle morphology and relative position. The initial advance, Lathrop 1, created a sharp-crested moraine and a protalus rampart within 200 m of the headwall. The retreat of the glacier and recent ice movement, Lathrop 2, is recognized by the deformation of the moraine and a mantle of "protalus till" creating a polygenetic "push-deformation'' moraine. Both the moraine and the protalus rampart have sparse vegetation, no lichens, and a lightly weathered Cox/C soil. This sequence is correlative with LIA Phase 1 and Phase 2 on Mt. Jefferson, central Oregon Cascades, and is broadly correlated with LIA deposits throughout the Cascades, Sierra Nevada, and Rocky Mountains. There is no evidence for pre-LIA deposits at Mt. Thielsen. The ELA on Lathrop Glacier (2450 m) is lower than ELAs on nearby glaciers. The glacier probably exists because of its preferential topographic position and extensive debris cover; thus, if annual snowfall decreases the glacier will persist longer than a similar sized bare ice glacier. Conversely, a growing protalus rampart may indicate an increase in annual snowfall but not necessarily a decrease in annual temperatures. The lack of older Neoglacial deposits on Mt. Thielsen may be a result of insufficient snowfall to maintain or advance the Lathrop Glacier. As such, the LIA may represent a period when climatic conditions were more severe than at any other time in the Neoglacial. Boulder size, shape, and orientation proved useful for classifying geomorphic features and assessing the relative ages of slopes. However, soils are the best method for correlating deposits in the cirque with other locations. Soils beyond the moraine are developed in Mazama ash and have moderately developed Bw horizons, depth to weathering over 70 cm, and Harden's PDI for B horizons of 2.10-3.64. Soils are Typic Vitricryands.
216

36Cl Chronologies and ELA reconstructions from the northern boundary of the South American Arid Diagonal

Thornton, Rachel M. 01 August 2019 (has links)
No description available.
217

The abandoned glacial lake shorelines of southwest Labrador.

Harrison, David Alan. January 1964 (has links)
No description available.
218

PALEOPRODUCTIVITY VARIATIONS IN THE EASTERN CENTRAL EQUATORIAL PACIFIC OCEAN ON GLACIAL TIMESCALES

Hale, Sarah Beth 22 August 2008 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Paleoproductivity records during the late Pleistocene are sparse. The equatorial Pacific and the Southern Ocean are collectively responsible for the majority of the new production in the oceans. The nutrient and carbon mass balances of these regions must be constrained in order to fully understand net global biological productivity on glacial timescales. The geochemistry of two east-central equatorial Pacific Ocean cores (02° 33.48 N; 117° 55.06 W) and (00° 15.42 S; 113° 00.57 W) are used to examine changes in biological productivity due to nutrient upwelling on glacial timescales during the Pleistocene. The cores were recovered in March 2006 on the AMAT03 cruise, a site survey cruise for IODP Proposal 626. The total concentrations of Ca, Ti, Fe, Al, P, Ba, S, Mg, Sr, Zn and Mn were determined by a total sediment digestion followed by analysis by inductively coupled plasma-atomic emission spectrometry (ICP). Original solid forms of P for 34 evenly spaced samples throughout one core were determined using the P Sequential Extraction technique. This study is attempting to compare upwelling and productivity records by determining temporal records of nutrient proxies, using Latimer and Filippelli (2006) which focused on the Southern Ocean. Equatorial upwelling and Southern Ocean upwelling both appear to exhibit strong glacial timescale variability. The P geochemistry results indicate that the P signal is largely biological. The equatorial Pacific evidence, in accordance with Southern Ocean patterns, supports a nutrient budget-driven productivity signal over time. Gabriel M. Filippelli, Ph. D, Committee Chair
219

The Origin and Extent of Lacustrine Deposits in the Grand River Valley, Northeastern Ohio

Ring, Bridget P. 20 September 2013 (has links)
No description available.
220

Regional Jointing Pattern Within the Surficial Glacial Sediments and Bedrock of South-Central Ontario

Daniel, Sheila Ellen 03 1900 (has links)
<p> There is mounting pressure to find suitable disposal sites for both household and industrial waste in south-central Ontario as a solution to Metropolitan Toronto's growing 'garbage crisis'. New data indicate that the fine-grained glacial sediments of south-central Ontario, previously considered to be 'tight' and impermeable, are in fact penetrated by an extensive joint system. This thesis provides basic information regarding the regional character, orientation and origin of joints within the surficial glacial sediments and bedrock of south-central Ontario. Three regional joint sets can be identified. Within the bedrock, the joint sets are oriented northeast/southwest, northwest/southeast and north/south. This trend is consistent with the regional jointing pattern within the overlying glacial sediments and suggests that the joints may have propagated from the bedrock into the glacial sediments. A comparison between the regional jointing pattern identified in bedrock and glacial materials and the orientation of stress release structures suggests that the regional pattern of jointing is controlled by the regional stress field which results from intraplate tectonic stresses. However, the orientation of joints at any individual site may also be controlled by 'local' factors such as face orientation, direction of glacial ice movement and lithology and by randomly oriented joints formed as the result of physical and chemical weathering, synaeresis, subglacial deformation and stress relief. The identification of regional jointing pattern within south-central Ontario allows the prediction of joint characteristics and orientations at potential landfill sites in the region, critical to the accurate evaluation of the permeability of the substrate materials.</p> / Thesis / Master of Science (MSc)

Page generated in 0.046 seconds