• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of precipitation seasonality on climatic sensitivity of glacier mass balance

Fujita, Koji, 藤田, 耕史 18 October 2008 (has links)
No description available.
2

Evolution of Seasonal Variations in Motion of the Kaskawulsh Glacier, Yukon Territory

Herdes, Emilie January 2014 (has links)
Differential GPS data from 2007-2014 are used to assess horizontal and vertical velocity variations of the Kaskawulsh Glacier at interannual and intra-annual timescales. These indicate that an upglacier propagating high velocity event occurs every spring at the onset of melt, and that a downglacier propagating high velocity event occurs every fall or winter after melt has finished. These events suggest that the subglacial drainage system alternates between a distributed system in the winter and channelized system in the summer and fall. In addition, there is a strong negative correlation between summer melt and velocity the following fall and winter, with strong melt years resulting in low velocities. For each additional metre of summer melt, an 8.6% average decrease in velocity is observed on the glacier the following fall-winter. These results suggest that changes in the subglacial drainage system limit the sensitivity of glacier motion to increased meltwater inputs. Glacier motion will likely show a net decrease under a warming climate due to the negative correlation between surface melt rates and ice motion and a decrease in driving stresses as a result of reduced ice thicknesses. In addition, future fall-winter velocity patterns could be accurately predicted from only a month or two of summer melt data, with May-June melt providing the best indication of fall-winter motion. This study also suggests that the common assumption that glaciers are ‘stable’ in the late fall and winter is incorrect.
3

A Regional Analysis of Changing Climate Conditions and Glacier Mass Balance in Svalbard / En regional analys av förändrade klimatförhållanden och den glaciala massbalansen på Svalbard

Bergman, Ottar January 2019 (has links)
The Arctic archipelago of Svalbard has experienced among the greatest increases in temperature on Earth in the last few decades. The changing climatic conditions have a large impact on the glacier mass balance. This study makes use of a highresolution model dataset with data on climatic and glacier conditions on Svalbard from 1957 to 2018. The model dataset is used to analyse the spatiotemporal variability in glacier mass balance across Svalbard and linking those changes to long-term trends in meteorological conditions. The study is focused on the spatial gradients in trends between two regions in Svalbard, the coldest part of the archipelago, Nordaustlandet and the milder southern part of the main island Spitsbergen. The north eastern (NE) region is found to have a greater increase in annual air temperature over the simulation period with 5.5 °C compared to 3.5 °C for the south western (SW) region. The increase in annual summer temperatures is much smaller with a total increase of 1 °C for the NW and 1.5 °C for the SW. Both regions show a small, but significant, increase of precipitation. Relative humidity and cloud cover in the NE are increasing slightly over the time period, probably due to retreating sea ice cover. Glacier melt and runoff are increasing in both regions, which is contributing to significant negative trends in the mass balance. The increase in melt and run off is stronger in the SW than in the NE. There’s a strong correlation between summer air temperature and glacier mass balance, melt and runoff. Refreezing in the NE is decreasing much faster than in the SW. Refreezing is strongly correlated with annual air temperatures in the NE and not in the SW, probably due to lower temperatures in the NE region.
4

Surface mass balance of Arctic glaciers: Climate influences and modeling approaches

Gardner, Alex Sandy 11 1900 (has links)
Land ice is losing mass to the worlds oceans at an accelerated rate. The worlds glaciers contain much less ice than the ice sheets but contribute equally to eustatic sea level rise and are expected to continue to do so over the coming centuries if global temperatures continue to rise. It is therefore important to characterize the mass balance of these glaciers and its relationship to climate trends and variability. In the Canadian High Arctic, analysis of long-term surface mass balance records shows a shift to more negative mass balances after 1987 and is coincident with a change in the mean location of the July circumpolar vortex, a mid-troposphere cyclonic feature known to have a strong influence on Arctic summer climate. Since 1987 the occurrence of July vortices centered in the Eastern Hemisphere have increased significantly. This change is associated with an increased frequency of tropospheric ridging over the Canadian High Arctic, higher surface air temperatures, and more negative glacier mass balance. However, regional scale mass balance modeling is needed to determine whether or not the long-term mass balance measurements in this region accurately reflect the mass balance of the entire Canadian High Arctic. The Canadian High Arctic is characterized by high relief and complex terrain that result in steep horizontal gradients in surface mass balance, which can only be resolved if models are run at high spatial resolutions. For such runs, models often require input fields such as air temperature that are derived by downscaling of output from climate models or reanalyses. Downscaling is often performed using a specified relationship between temperature and elevation (a lapse rate). Although a constant lapse rate is often assumed, this is not well justified by observations. To improve upon this assumption, near-surface temperature lapse rates during the summer ablation season were derived from surface measurements on 4 Arctic glaciers. Near-surface lapse rates vary systematically with free-air temperatures and are less steep than the free-air lapse rates that have often been used in mass balance modeling. Available observations were used to derive a new variable temperature downscaling method based on temperature dependent daily lapse rates. This method was implemented in a temperature index mass balance model, and results were compared with those derived from a constant linear lapse rate. Compared with other approaches, model estimates of surface mass balance fit observations much better when variable, temperature dependent lapse rates are used. To better account for glacier-climate feedbacks within mass balance models, more physically explicit representations of snow and ice processes must be used. Since absorption of shortwave radiation is often the single largest source of energy for melt, one of the most important parameters to model correctly is surface albedo. To move beyond the limitations of empirical snow and ice albedo parameterizations often used in surface mass balance models, a computationally simple, theoretically-based parameterization for snow and ice albedo was developed. Unlike previous parameterizations, it provides a single set of equations for the estimation of both snow and ice albedo. The parameterization also produces accurate results for a much wider range of snow, ice, and atmospheric conditions.
5

Surface mass balance of Arctic glaciers: Climate influences and modeling approaches

Gardner, Alex Sandy Unknown Date
No description available.
6

Methods for the analysis of time series of multispectral remote sensing images and application to climate change variable estimations

Podsiadło, Iwona Katarzyna 08 November 2021 (has links)
In the last decades, the increasing number of new generation satellite images characterized by a better spectral, spatial and temporal resolution with respect to the past has provided unprecedented source of information for monitoring climate changes.To exploit this wealth of data, powerful and automatic methods to analyze remote sensing images need to be implemented. Accordingly, the objective of this thesis is to develop advanced methods for the analysis of multitemporal multispectral remote sensing images to support climate change applications. The thesis is divided into two main parts and provides four novel contributions to the state-of-the-art. In the first part of the thesis, we exploit multitemporal and multispectral remote sensing data for accurately monitoring two essential climate variables. The first contribution presents a method to improve the estimation of the glacier mass balance provided by physically-based models. Unlike most of the literature approaches, this method integrates together physically-based models, remote sensing data and in-situ measurements to achieve an accurate and comprehensive glacier mass balance estimation. The second contribution addresses the land cover mapping for monitoring climate change at high spatial resolution. Within this work, we developed two processing chains: one for the production of a recent (2019) static high resolution (10 m) land cover map at subcontinental scale, and the other for the production of a long-term record of regional high resolution (30 m) land cover maps. The second part of this thesis addresses the common challenges faced while performing the analysis of multitemporal multispectral remote sensing data. In this context, the third contribution deals with the multispectral images cloud occlusions problem. Differently from the literature, instead of performing computationally expensive cloud restoration techniques, we study the robustness of deep learning architectures such as Long Short Term Memory classifier to cloud cover. Finally, we address the problem of the large scale training set definition for multispectral data classification. To this aim, we propose an approach that leverages on available low resolution land cover maps and domain adaptation techniques to provide representative training sets at large scale. The proposed methods have been tested on Sentinel-2 and Landsat 5, 7, 8 multispectral images. Qualitative and quantitative experimental results confirm the effectiveness of the methods proposed in this thesis.
7

Glacier response to climate variability and climate change across the Southern Andes

Weidemann, Stephanie Suzanne 16 June 2021 (has links)
Die Gletscherschmelze in den südlichen Anden trägt maßgeblich zum Anstieg des Meeresspiegels der letzten Jahrzehnte bei und beeinflusst regional die saisonale Wasserverfügbarkeit. In jüngster Zeit wurde eine rapide Zunahme der Massenverluste insbesondere einzelner großer Auslassgletscher des Südlichen Patagonisches Eisfeldes beobachtet. Im Rahmen der Dissertation wurden die rezente Variabilität des Klimas und der klimatischen Massenbilanz für ausgewählte vergletscherte Gebiete in Patagonien und Feuerland untersucht. Die Verbesserung unseres Verständnisses über räumliche und zeitliche Muster der klimatischen Massenbilanz, ihrer atmosphärischen Antriebsfaktoren und ihres Einflusses auf das in jüngster Vergangenheit beobachtete individuelle Gletscherverhalten, sind weitere wichtige Ziele. Da die Klimavariabilität die Hauptursache für lokale Veränderungen in der Kryosphäre der südlichen Anden ist, wurden langjährige meteorologische Beobachtungen im Gebiet der Gran Campo Nevado-Eiskappe im südlichsten Patagonien im Hinblick auf räumliche und zeitliche Variabilität untersucht und der Einfluss mesoskaliger Wettermuster und Modi atmosphärischer Oszillationen auf die Ausprägung des Klimas analysiert. Darüber hinaus wurde die rezente Variabilität der klimatischen Massenbilanz für ausgewählte Gletscher in Südpatagonien und Feuerland durch die Implementierung des Energie- und Massenbilanzmodells COSIMA simuliert. Eine unterschiedliche Ausprägung der Oberflächenmassenbilanz und geodätischer Massenbilanz unterstreicht wie wichtig ein besseres Verständnis über die Prozesse der klimatischen Massenbilanz und Eisdynamik ist. Des Weiteren wurden Simulationen der klimatischen Massenbilanz eingesetzt, um eine ausgeglichene Massenbilanz für rezente und vergangene Ausdehnungen des Gletschers Schiaparelli abzuleiten. Ziel war es, eine modellgestützte Annäherung an die klimatischen Bedingungen während der Kleinen Eiszeit zu simulieren. / Glacier mass loss of the Southern Andes contributes largely to sea-level rise during recent decades and also affects the regional water availability. Despite the overall glacier retreat of most glaciers in Patagonia and Tierra del Fuego, a recent increase in mass loss of individual glaciers has been observed. The recent variability of climate and climatic mass balance for selected glaciated study sites in Patagonia and Tierra del Fuego are investigated in this thesis. Improving our understanding on the spatial and temporal variations of climatic mass balance processes, its atmospheric drivers, and their impact on the recently observed individual glacier behavior are further important aims. Since climate variability is the key driver of local changes in the cryosphere in the Southern Andes, a unique record of meteorological observations across the Gran Campo Nevado Ice Cap in Southernmost Patagonia was analyzed with regard to main climate features and the relationship between the in-situ observations, large-scale climate modes and mesoscale weather patterns. Furthermore, recent climatic mass balance variability was simulated for selected glaciers in Southern Patagonia and Tierra del Fuego by implementing the ’COupled Snow and Ice energy and MAss balance model’ COSIMA. Contrasting patterns of positive simulated annual climatic mass balance and clearly negative geodetic mass balance were found for two neighboring glaciers of the Southern Patagonia Icefield between 2000 and 2014. This highlights the importance of understanding of both, the climatic mass balance, and the ice-dynamical processes. Climatic mass balance simulations were further used to derive glacier steady-state conditions for recent and past glacier extents of Schiaparelli Glacier, aiming for a model-based approximation of climate conditions during the Little Ice Age.
8

Fonctionnement hydro-glaciologique du bassin versant de l'Arve dans les Alpes françaises : variabilité climatique et sur la disponibilité de la ressource en eau / Hydro-glaciological behaviour of the Arve catchment in the French Alps : climate variability and consequences on water resources availability

Viani, Alessandra 14 May 2019 (has links)
La réduction du volume des glaciers et la fusion printanière plus précoce de la neige causée par le réchauffement climatique provoquent des variations du cycle hydrologique à la fois pour les têtes de bassin versant, mais aussi pour les zones situées plus à l’aval. Afin de prédire correctement l’amplitude des changements possibles futurs et d’envisager une gestion adaptée, une bonne connaissance de l’interaction entre les glaciers, le climat et les écoulements hydriques est nécessaire. L’objectif de cette étude est d’évaluer l’effet de la variabilité climatique sur le fonctionnement hydro-glaciologique et ses conséquences sur la disponibilité de l’eau du bassin versant de l’Arve (Alpes françaises) depuis 1960. Ce bassin s’étend sur une surface de 1958 km2 et est composé de cinq bassins versants emboités (Arveyron d’Argentière, Arveyron de la Mer de Glace, Arve au Pont des Favrands, à Sallanches and au Bout du Monde), tous influencés par la fusion glaciaire et nivale mais dans différentes proportions étant donnée la large gamme d’extension de couverture glaciaire s’étalant de 5 á 53%. Ce travail est basé sur des longs jeux de données glaciologiques, météorologiques, hydrologiques et de couverture de neige qui sont issues soit de mesures ponctuelles dans l’espace soit de données obtenues par télédétection.L’analyse des tendances a été réalisée sur des données hydrologiques et météorologiques des cinq bassins versants emboités. Pour cela, le cycle saisonnier du débit est ajusté en utilisant une fonction mathématique de type “modèle à pic asymétrique”. Les changements observés des débits ont été reliés aux variables météorologiques ainsi que à l’évolution de la couverture glaciaire. Les résultats indiquent un comportement contrasté entre les bassins versants selon les taux d’englacements, avec une tendance croissante des valeurs de débit dans les bassins versants fortement englacés (couverture de glacier >30%) et une décroissante pour les moins englacés. La sensibilité du cycle hydrologique au changement climatique futur a été évaluée. Pour le milieu du 21e siècle, on prévoit que le volume annuel écoulé serait réduit de 16% pour l’Arveyron d’Argentière et de 31% pour l’Arveyron de la Mer de Glace. Pour la période estivale, la quantification détaillée de chaque terme de l’équation du bilan hydrologique, ainsi que leurs incertitudes, sur les bassins versants de l’Arveyron d’Argentière et de l’Arveyron de la Mer de Glace-Leschaux a permis de souligner l’importance des transferts d’eau souterraine pour représenter et prédire le comportement hydro-glaciologique d’un bassin versant donné. Deux model d’écoulement distribués de type degré-jour couples à un modèle de routage hydrologique à réservoir linéaire ont était utilisé sur le bassin versant de l’Arveyron d’Argentière sur la période 1960–2009. La calibration est effectuée autant sur la base des données de débit qu’avec une approche multicritère avec les données de débit, de couverture neigeuse et du bilan de masse annuel, à pas de temps journalier. Les résultats montrent l’aptitude d’utiliser un modèle classique degré-jour pour simuler le comportement hydro-glaciologique et la production d’eau sous-glaciaire d’un bassin versant fortement glaciaire. Pour la période 1960–2004, une valeur de Kling Gupta Efficiency de 0.85 entre le débit simulé et observe à était obtenu. La calibration multicritère semble réduire les incertitudes des simulations. / Glacier recession and the anticipation of spring snow melt driven by a warming climate could lead to changes in the hydrological cycle affecting not only the headwater catchments but also the areas downstream. In order to correctly predict the magnitude of future possible changes and to consider appropriate strategies of water management, a good understanding of the interaction between glaciers, climate and hydrology is needed. The aim of this study is to assess the effect of climate variability on the hydro-glaciological behaviour and its consequence on water availability in the Arve River catchment (French Alps) since 1960. It covers 1958 km2 and is composed by five nested catchments (Arveyron d’Argentière, Arveyron de la Mer de Glace, Arve at Pont des Favrands, Arve at Sallanches and Arve at Bout du Monde), all influenced by glacier and snow melt but characterized by various percentages of glacier cover ranging from 5 to 53%. This research is based on a long dataset of in situ or remote sensing glaciological, meteorological, hydrological and snow cover area data.Trend analyses are performed on the hydrological and meteorological data at all the considered sites. The seasonal cycle of each catchment is fitted using a mathematical function, namely the asymmetric peak model, and changes in the discharge are related to observed changes in the meteorological variables and the glaciers’ evolution. Results point out a contrasting behaviour among the catchments characterized by different glacier covers, showing an increasing trend on the discharge values in highly glacierized catchments (with a glacier cover >30%) and a decrease in the low glacierized ones. The sensitivity of the seasonal cycle to the future climate is evaluated. In the mid-21st century the annual runoff would be reduced by 16% for Arveyron d’Argentière and 31% for Arveyron de la Mer de Glace. Over the summer season, a detailed quantification of each term of the hydrological balance equation, as well as their uncertainties, on the Argentière and Mer de Glace-Leschaux drainage basins allows to underline the importance of considering the groundwater transfers to represent and predict the hydro-glaciological behaviour of a considered catchment. Two different distributed temperature index melt models coupled with a linear reservoir discharge model are used on the Arveron d’Argentière catchment over the 1960–2009 period. The calibration is carried out against discharge only and with a multi- criteria approach considering the discharge, the snow cover area and the glacier-wide annual mass balance values at daily time step. Results demonstrate the suitability of the use of a classical degree day model in simulating the hydro-glaciological behaviour and the subglacial water production of a highly glacierized catchment. A KGE of 0.85 is obtained between the observed and simulate discharge values over the 1960–2004 period. The use of a multi-criteria approach seems to reduce the simulation uncertainties.

Page generated in 0.5178 seconds