Spelling suggestions: "subject:"class surface"" "subject:"glass surface""
1 |
Characterization and improvement of copper/glass adhesionHe, Baofeng January 2012 (has links)
The development of glass substrates for use as an alternative to printed circuit boards (PCBs) attracts significant industrial attention, because of the potential for low cost but high performance interconnects and optical connection. Electroless plating is currently used to deposit conductive tracks on glass substrates and the quality of copper / glass adhesion is a key functional issue. Without adequate adhesive strength the copper plating will prematurely fail. Existing studies have covered the relationship between surface roughness and adhesion performance, but few of them have considered the detail of surface topography in any depth. This research is specifically considering the mechanical contribution of the glass surface texture to the copper / glass adhesive bond, and attempting to isolate new ISO 25178 areal surface texture parameters that can describe these surfaces. Excimer laser machining has been developed and used to create a range of micro pattern structured surfaces on CMG glass substrates. Excimer mask dimensions and laser operation parameters have been varied and optimized according to surface topography and adhesion performance of the samples. Non-contact surface measurement equipment (Zygo NewView 5000 coherence scanning interferometry) has been utilized to measure and parameterize (ISO 25178) the surface texture of the glass substrates before electroless copper metallization. Copper adhesion quality has been tested using quantitative scratch testing techniques, providing an identification of the critical load of failure for different plated substrates. This research is establishing the statistical quality of correlation between the critical load values and the associated areal parameters. In this thesis, the optimal laser processing parameter settings for CMG glass substrate machining and the topographic images of structured surfaces for achieving strong copper / glass plating adhesion are identified. The experimental relationships between critical load and areal surface parameters, as well as the discussions of a theoretical approach are presented. It is more significant to consider Sq, Sdq, Sdr, Sxp, Vv, Vmc and Vvc to describe glass substrate surface topography and the recommended data value ranges for each parameter have been identified to predict copper / plating adhesion performance.
|
2 |
Studies of float glass surfaces by neutron and x-ray reflectionDalgliesh, R. M. January 2001 (has links)
No description available.
|
3 |
Reversible Attachment of Organic Dyes to Silica Surface Through Meijer-Type Hydrogen BondingCrowe, Loretta L. 11 August 2006 (has links)
In an approach to creating molecular-scale structures on glass surfaces via self assembly, a strongly-dimerizing ureido-[2-(4-pyrimidone)] (UPy) quadruple hydrogen-bonding array was chemically immobilized on silica surfaces by way of a triethoxysilane functionality. The unreacted surface silanols were then thoroughly passivated with a monofunctional organosilane, resulting in isolated UPy binding sites on the glass surface. These binding sites were found to selectively bind the strongly fluorescent perylenediimide (PDI) functionalized UPy molecules from solution, thus non-covalently linking the fluorophore to the surface. The association between the self-complementary molecules was exceptionally strong, both in solution and at the surface, such that effective hydrogen-bonding was retained after most solvent treatments. The binding was also reversible, however, so that washes with polar protic and dipolar aprotic solvents with high hydrogen-bonding capabilities, such as water, alcohols, and DMSO, resulted in the removal of the non-covalently bound fluorophore-tagged UPy.
The UPy:UPy dimer system was also investigated in solution, using pyrene intramolecular excimer formation as a monitor of the dissociation of the pyrene heterodimers into homodimers incapable of forming excimers at micromolar concentrations. In addition, the energy transfer process in solution between pyrene and perylenediimide fluorophores linked through UPy dimerization was studied, with the intention using FRET-based measurements on the surface at single-molecule levels in order to determine the distances between UPy binding sites. Energy transfer was found to occur, but the observed photophysical behavior was complicated by possible secondary processes, which steady-state fluorescence measurements were unable to elucidate.
The benefit of using this UPy system for attaching molecules to a surface lies in its reversibility of binding and versatility in manner of molecules which van be retained on the modified surface with a strong association. In this way molecular-scale features could conceivably be constructed on a surface by self-assembly, with the option of further chemical reactions to lock them in place, thus creating structures beyond the accessibility range of the conventional lithographic methods.
|
4 |
Theoretical Studies of Structure and Dynamics of Chalcogenide GlassesInam, Fakharul January 2009 (has links)
No description available.
|
5 |
Ultra-high carrier modulation in two dimensions through space charge doping : graphene and zinc oxide / Modulation ultra-haute de charge en deux dimensions à travers le dopage par charge d'espace : graphène et oxide de zincParadisi, Andrea 03 November 2016 (has links)
La modulation de la densité de charge est un aspect important de l'étude de les transitions de phase électroniques ainsi que des propriétés électroniques des matériaux et il est à la base de plusieurs applications dans la micro-électronique. L'ajustement de la densité des porteurs de charge (dopage) peut être fait par voie chimique, en ajoutant des atomes étrangers au réseau cristallin du matériau ou électrostatiquement, en créant un accumulation de charge comme dans un Transistor é Effet de Champ. Cette dernier m ethode est réversible et particuliérement appropriée pour les matériaux bidimensionnels (2D) ou pour des couches ultra-minces. Le Dopage par Charge d'Espace est une nouvelle technique inventée et développée au cours de ce travail de thèse pour le dopage electrostatique de matériaux déposés sur la surface du verre. Une charge d'espace est créée à la surface en provoquant le mouvement des ions sodium présents dans le verre sous l'effet de la chaleur et d'un champ électrique extérieur. Cette espace de charge induit une accumulation de charge dans le matériau déposé sur la surface du verre, ce qui peut être supérieure à 10^14/cm^2. Une caractérisation détaillée faite avec mesures de transport, effet Hall, mesures Raman et mesures de Microscopie a Force Atomique (AFM) montrent que le dopage est réversible, bipolaire et il ne provoque pas des modifications chimiques. Cette technique peut être appliquée a des grandes surfaces, comme il est montré pour le cas du graph ene CVD. Dans une deuxiéme partie le dopage par espace de charge est appliqué à des couches ultra-minces (< 40 nm) de ZnO_(1-x). Le résultat est un abaissement de la résistance par carré de 5 ordres de grandeur. Les mesures de magnéto-transport faites à basse température montrent que les électrons dop es sont confinés en deux dimensions. Une transition remarquable de la localisation faible à l'anti-localisation est observée en fonction du dopage et de la température et des conclusions sont tirées à propos des phénoménes de diffusion qui gouverne le transport électronique dans des diff erentes conditions dans ce matériau. / Carrier modulation is an important parameter in the study of the electronic phase transitions and the electronic properties of materials and at the basis for many applications in microelectronics. The tuning of charge carrier density (doping) can be achieved chemically, by adding foreign atoms to the crystal structure of the material or electrostatically, by inducing a charge accumulation like in a Field Eect Transistor device. The latter method is reversible and particularly indicated for use in two dimensional (2D) materials or ultra-thin films. Space Charge Doping is a new technique invented and developed during this thesis for the electrostatic doping of such materials deposited on a glass surface. A space charge is created at the surface by causing sodium ions contained in glass to drift under the Eect of heat and an external electric field. This space charge in turn induces a charge accumulation in the material deposited on the glass surface which can be higher than 10^14/cm^2. Detailed characterization using transport, Hall effect, Raman and AFM measurements shows that the doping is reversible, ambipolar and does not induce chemical changes. It can be applied to large areas as shown with CVD graphene. In a second phase the space charge doping method is applied to polycrystalline ultra-thin films (< 40 nm) of ZnO_(1-x). A lowering of sheet resistance over 5 orders of magnitude is obtained. Low temperature magneto-transport measurements reveal that doped electrons are confined in two dimensions. A remarkable transition between weak localization and anti-localization isobserved as a function of doping and temperature and conclusions are drawn concerning the scattering phenomena governing electronic transport under different conditions in this material.
|
6 |
Biovidros derivados do 45S5 : os efeitos do Nb2O5 ou da modificação da superfície com Ca2+ sobre a estrutura e bioatividade / Bioglasses derived from 45S5 : effects of Nb2O5 or surface modification with Ca2+ on the glass structure and bioactivityLopes, João Henrique, 1982- 26 August 2018 (has links)
Orientadores: Celso Aparecido Bertran, Italo Odone Mazali / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T18:05:40Z (GMT). No. of bitstreams: 1
Lopes_JoaoHenrique_D.pdf: 497901561 bytes, checksum: bc2ebe969caf9d4e0bc28574f75fae56 (MD5)
Previous issue date: 2015 / Resumo: Esta tese está dividida em quatro capítulos. O capítulo I apresenta os fundamentos sobre biomateriais e biovidros. O capítulo II é dedicado a investigar os efeitos da adição de óxido de nióbio (Nb2O5) sobre as propriedades físicas, a estrutura do vidro e a bioatividade de duas séries vítreas derivadas do 45S5 Bioglass® (BG45S5). A composição química do BG45S5 foi modificada pela substituição de 1,3 e 2,6% de P2O5 por Nb2O5 e 1, 2 e 5% do SiO2 pelo Nb2O5, gerando as séries (I) e (II), respectivamente (BGNs). A introdução do Nb2O5 aumenta significativamente a densidade e a estabilidade contra a desvitrificação, como evidenciado pelo parâmetro ?Txg = (Tx - Tg). Os espectros de ressonância magnética nuclear no estado sólido MAS NMR para os núcleos 29Si, 31P e 23Na, espectroscopia Raman e a determinação de algumas propriedades físicas permitiu um entendimento detalhado da estrutura dos vidros BGNs. Para os vidros da série I, o octaedro de NbO6 entra na rede silicato, partilhando os seus vértices com os tetraedros de silício para formar cadeias O-Si-O-Nb-O-Si-O, enquanto que para os vidros da série II, os octaedros NbO6 atuam como agente de reticulação para as cadeias de silicatos. A viabilidade celular e a atividade metabólica foram determinadas utilizando o ensaio de MTT. Os resultados dos estudos in vitro com os vidros BGNs sobre a viabilidade dos osteoblastos e proliferação não mostram diferenças significativas entre BGNs e BG45S5. Os resultados da experimentação in vivo em ratos Wistar sugerem que a presença de Nb2O5 pode efetivamente promover um aumento na bioatividade de BGNs, observado pelo aumento da quantidade formada de osso cortical e trabecular. O capítulo III abrange a investigação da modificação da superfície do biovidro BG45S5 pelo enriquecimento com cálcio, por imersão em banho de sal fundido contendo cálcio (BG45Cas) e o seu efeito sobre a estrutura da superfície, a velocidade de dissolução e também a cinética da formação do fosfato de cálcio. A combinação da microscopia de força atômica e espectroscopia Raman (AFM) permitiu o acompanhamento das mudanças estruturais do BG45S5 submetido a diversos tempos de imersão no banho de sal fundido a 480 °C, enquanto que a fluorescência de raios X (XRF) foi empregada para monitorar a evolução temporal do processo de troca iônica entre Ca2+ e Na+. Os rearranjos estruturais, como resultado da troca iônica, foram sistematicamente investigados no BG45Ca30 pelas espectroscopias FTIR e 29Si e 31P MAS NMR. Os resultados mostram que a quantidade de íons cálcio que entram na estrutura do vidro é maior do que a quantidade de íons sódio que deixa a rede, de modo que, para preservar a eletroneutralidade na rede, ocorrem alterações locais na estrutura que conduzem a uma depolimerização da rede de silicato. A formação da fase de fosfato de cálcio quimicamente equivalente à hidroxiapatita (HA) na superfície do biovidro foi estudada por imersão dos biovidros em HEPES 50,69 mmol L-1 e fluido corpóreo simulado (SBF) durante 2 dias. A camada de apatita formada foi caracterizada pela espectroscopia 31P MAS NMR. A cinética de crescimento da camada de apatita sobre a superfície do BG45Ca30 sugere que a modificação da superfície do vidro não só promove uma redução no tempo para a formação de HA, mas também a formação de hidroxiapatita com maior grau de cristalinidade. Finalmente, o capítulo IV descreve as nossas contribuições, observações finais e sugestões para futuros trabalhos / Abstract: This thesis is divided into four chapters. Chapter I presents background information on the biomaterial and bioglasses. Chapter II is devoted to investigate the effects of adding niobium oxide (Nb2O5) on the physical properties, glass structure and bioactivity of two glasses series derived from the 45S5 Bioglass® (BG45S5). The chemical composition of BG45S5 was modified by replacing 1.3 and 2.6% of P2O5 with Nb2O5 and 1, 2.5, and 5% of SiO2 with Nb2O5, generating series (I) and (II), respectively (BGNs). Adding Nb2O5 significantly increases the density and the stability against devitrification as indicated by ?Txg = (Tx - Tg). The multinuclear 29Si, 31P, and 23Na solid-state MAS NMR spectra of the glasses, Raman spectroscopy, and the determination of some physical properties have generated insight into the structure of the glasses. For the series I glasses, the octahedral niobium take part in glasses network, sharing its corners with silicon tetrahedra forming O-Si-O-Nb-O-Si-O chains, whereas for the series II, NbO6 octahedra act as crosslinker for the silicates chains. Cell viability and metabolic activity were determined using the MTT assay. We investigated the in vitro effect of BGNs glasses on osteoblast viability and proliferation. No significant differences were found between BGNs and BG45S5. Furthermore, in vivo tests in Wistar rats have suggested that the presence of Nb2O5 might actually promote an increase in bioactivity of BGNs, increasing formation of cortical and cancellous bones. The chapter III covers research related to of the surface modification of BG45S5 bioglass (BG45Cas) and its effect on the surface structure, dissolution rate and calcium phosphate formation. BG45Cas were obtained by ion exchange method by immersion in molten salt bath containing calcium. The combination of Raman spectroscopy and atomic force microscopy (AFM) allowed the monitoring of the structural changes of BG45S5 bioglass submitted to increasing durations of immersion in the molten salt bath at 480 °C, whereas X-ray Fluorescence (XRF) was employed to derive the time evolution of Ca2+-Na+ ion exchange process. Structural rearrangements as a result of Ca2+-Na+ ion exchange have been investigated systematically on 45S5 bioglasses by FTIR and 29Si and 31P MAS NMR spectroscopies. Results show that the insertion of calcium ions in the glass structure is higher than the departure of sodium ions. The electroneutrality of the glass structure is preserved with local alterations, which lead to a higher degree of depolymerization of the silicate network. The formation of calcium phosphate layer chemically equivalent to hydroxyapatite (HA) on the bioglass surface was evaluated by immersing the bioglasses in the HEPES 50,69 mmol L-1 and simulated body fluid (SBF) for up to 2 days. This apatite layer was characterized by 31P MAS NMR spectroscopy. The growth kinetics of the apatite layer on the surface of the bioglasses demonstrated that modification of the glass surface (BG45Ca30) cause not only a reduction in time of the formation of HA, but also induced hydroxyapatite phase formation with a higher degree of crystallinity. Finally, chapter IV describes our contributions, final remarks and suggests some ideas for future works / Doutorado / Físico-Química / Doutor em Ciências
|
7 |
Structure-Property Relationships of Surfactants at Interfaces and Polyelectrolyte-Surfactant AggregatesKjellin, Mikael January 2002 (has links)
The first part of this thesis is concerned with thestructure-property relationships in nonionic surfactantsystems. The main aim was to investigate how the surfactantstructure influences the adsorption at interfaces andinteractions between surfactant coated interfaces.Particularly, the effect of the structure of the surfactantheadgroups was investigated. These were sugar-based headgroupwith varying size and flexibility and poly(ethylene oxide)based headgroups with or without an additional amide or estergroup. The hydrophobic part of the surfactant consisted mostlyof straight alkyl chains, except for one type of poly(ethyleneoxide) based surfactant with a dehydroabietic hydrophobe. The main technique that was used is the surface forcetechnique, with which the forces acting between two adsorbedsurfactant layers on hydrophilic or hydrophobic surfaces can bemeasured. These forces are important for e.g. the stability ofdispersions. The hydrophilic surfaces employed were glass andmica, whereas the hydrophobic surfaces were silanized glass andhydrophobized mica. The adsorption behavior on hydrophilicsurfaces is highly dependent on the type of headgroup andsurface, whereas similar results were obtained on the two typesof hydrophobic surfaces. To better understand how the surfaceforces are affected by the surfactant structure, measurementsof adsorbed amount and theoretical mean-field latticecalculations were carried out. The results show that the sugarsurfactant layers and poly(ethylene oxide) surfactant layersgive rise to very different surface forces, but that the forcesare more similar within each group. The structure-propertyrelationships for many other physical properties have beenstudied as well. These include equilibrium and dynamicadsorption at the liquid-vapor interface, micelle size, micelledynamics, and wetting. The second part in this thesis is about the aggregationbetween cationic polyelectrolytes and an anionic surfactant.The surface force technique was used to study the adsorption ofa low charged cationic polyelectrolyte on mica, and theaggregation between the adsorbed polyelectrolyte with theanionic surfactant. The aggregation in bulk was studied withturbidimetry, small angle neutron scattering (SANS), and smallangle x-ray scattering (SAXS). An internal hexagonal aggregatestructure was found for some of the bulk aggregates. <b>Keywords:</b>nonionic surfactant, sugar surfactant,poly(ethylene oxide), amide, ester, polyelectrolyte, SDS,hydrophobic surface, glass surface, mica, adsorption,aggregation, micelle size, surface forces, wetting, dynamicsurface tension, NMR, TRFQ, SANS, SAXS, mean-field latticecalculations.
|
8 |
Structure-Property Relationships of Surfactants at Interfaces and Polyelectrolyte-Surfactant AggregatesKjellin, Mikael January 2002 (has links)
<p>The first part of this thesis is concerned with thestructure-property relationships in nonionic surfactantsystems. The main aim was to investigate how the surfactantstructure influences the adsorption at interfaces andinteractions between surfactant coated interfaces.Particularly, the effect of the structure of the surfactantheadgroups was investigated. These were sugar-based headgroupwith varying size and flexibility and poly(ethylene oxide)based headgroups with or without an additional amide or estergroup. The hydrophobic part of the surfactant consisted mostlyof straight alkyl chains, except for one type of poly(ethyleneoxide) based surfactant with a dehydroabietic hydrophobe.</p><p>The main technique that was used is the surface forcetechnique, with which the forces acting between two adsorbedsurfactant layers on hydrophilic or hydrophobic surfaces can bemeasured. These forces are important for e.g. the stability ofdispersions. The hydrophilic surfaces employed were glass andmica, whereas the hydrophobic surfaces were silanized glass andhydrophobized mica. The adsorption behavior on hydrophilicsurfaces is highly dependent on the type of headgroup andsurface, whereas similar results were obtained on the two typesof hydrophobic surfaces. To better understand how the surfaceforces are affected by the surfactant structure, measurementsof adsorbed amount and theoretical mean-field latticecalculations were carried out. The results show that the sugarsurfactant layers and poly(ethylene oxide) surfactant layersgive rise to very different surface forces, but that the forcesare more similar within each group. The structure-propertyrelationships for many other physical properties have beenstudied as well. These include equilibrium and dynamicadsorption at the liquid-vapor interface, micelle size, micelledynamics, and wetting.</p><p>The second part in this thesis is about the aggregationbetween cationic polyelectrolytes and an anionic surfactant.The surface force technique was used to study the adsorption ofa low charged cationic polyelectrolyte on mica, and theaggregation between the adsorbed polyelectrolyte with theanionic surfactant. The aggregation in bulk was studied withturbidimetry, small angle neutron scattering (SANS), and smallangle x-ray scattering (SAXS). An internal hexagonal aggregatestructure was found for some of the bulk aggregates.</p><p><b>Keywords:</b>nonionic surfactant, sugar surfactant,poly(ethylene oxide), amide, ester, polyelectrolyte, SDS,hydrophobic surface, glass surface, mica, adsorption,aggregation, micelle size, surface forces, wetting, dynamicsurface tension, NMR, TRFQ, SANS, SAXS, mean-field latticecalculations.</p>
|
9 |
Aplikace elektrického výboje v kapalinách pro čistění nekovových archeologických předmětů / Application of electric discharge in liquids for surface cleaning of non-metallic archaeological objectsTihonová, Jitka January 2020 (has links)
This diploma thesis is focused on the plasma surface treatment of historical glass from the 18th and 19th centuries by low temperature electrical discharges in solutions of sodium chloride and potassium carbonate and finding the most suitable settings of conditions for the surface cleaning. Stainless steel electrode and a specially designed electrode system with wolfram wire in the quartz glass capillary were used for the generation of discharge using an audio frequency power supply. Each line of samples was made from one piece of historical glass that was cut to smaller pieces. All cleaned samples were photographed before and after the cleaning so the possible changes of the cleaned area could be visually compared. Then the samples were analysed by LA-ICP-MS (line scanning of surface), where was analysed the cleaned area of samples, and values were compared to the analysis of the reference sample that was not cleaned. Examined isotopes of elements were selected on the basis of the supposed composition of glass, corrosion products, and soil at the place of discovery. Analyses were standardized by NIST 610. Acquired values were transferred to oxides. The most important oxides (Na2O, MgO, SiO2, P2O5 a K2O) were chosen for deciding the most effective cleaning settings. It was decided that the most effective setting for cleaning was the one where the biggest difference of values between sample and reference occurred. Four series of these solutions were compiled and one parameter was changed for each of them. Solutions and their conductivity, frequency of the power supply, and time of cleaning were chosen as changing values. Three samples of different times of cleaning were cleaned without interruption. The time of cleaning was split into intervals of 30 seconds of cleaning and 1 minute of non-action for another two samples of this series. In this way we were trying to find out if the following surface analysis will be influenced by the diffusion of the particles into the sample, or not. The frequency of power supply was recorded and its dissipated power was calculated for each measurement. Emission spectra of a series of different solution conductivity were measured before cleaning of samples. Measurement of OES was made with the ignition of discharge so the active species of plasma were shown in spectra. These species are probably participating in the cleaning process of glass. Emission spectra were also measured after cleaning to find out if values of active species were changed or unknown spectral lines appeared. These lines should be from dirt and corrosion products that were cleaned from the surface of the glass. It was found out that the most effective cleaning of sample 1 (series where the conductivity of the NaCl solution was changed) was done in a solution of conductivity 900 S/cm. The most effective cleaning of sample 4 and sample 7 (series where the conductivity of the K2CO3 solution was changed) was done in a solution of conductivity 600 S/cm. The most effective cleaning of sample 6 (series where the frequency was changed) was done at frequency = (15200 ± 30) Hz. The most effective cleaning of sample 5 (series of different cleaning times) lasted seven minutes without time delay. The future research it should be appropriate to try a combination of these most effective cleaning settings on the surface of more samples, so the finding of this thesis will be confirmed.
|
Page generated in 0.0552 seconds