• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing Simulated Sonar Images With CycleGAN for Deep Learning in Autonomous Underwater Vehicles / Djupinlärning, maskininlärning, sonar, simulering, GAN, cycleGAN, YOLO-v4, gles data, osäkerhetsanalys

Norén, Aron January 2021 (has links)
This thesis addresses the issues of data sparsity in the sonar domain. A data pipeline is set up to generate and enhance sonar data. The possibilities and limitations of using cycleGAN as a tool to enhance simulated sonar images for the purpose of training neural networks for detection and classification is studied. A neural network is trained on the enhanced simulated sonar images and tested on real sonar images to evaluate the quality of these images.The novelty of this work lies in extending previous methods to a more general framework and showing that GAN enhanced simulations work for complex tasks on field data.Using real sonar images to enhance the simulated images, resulted in improved classification compared to a classifier trained on solely simulated images. / Denna rapport ämnar undersöka problemet med gles data för djupinlärning i sonardomänen. Ett dataflöde för att generera och höja kvalitén hos simulerad sonardata sätts upp i syfte att skapa en stor uppsättning data för att träna ett neuralt nätverk. Möjligheterna och begränsningarna med att använda cycleGAN för att höja kvalitén hos simulerad sonardata studeras och diskuteras. Ett neuralt nätverk för att upptäcka och klassificera objekt i sonarbilder tränas i syfte att evaluera den förbättrade simulerade sonardatan.Denna rapport bygger vidare på tidigare metoder genom att generalisera dessa och visa att metoden har potential även för komplexa uppgifter baserad på icke trivial data.Genom att träna ett nätverk för klassificering och detektion på simulerade sonarbilder som använder cycleGAN för att höja kvalitén, ökade klassificeringsresultaten markant jämfört med att träna på enbart simulerade bilder.
2

Hybrid Ensemble Methods: Interpretible Machine Learning for High Risk Aeras / Hybrida ensemblemetoder: Tolkningsbar maskininlärning för högriskområden

Ulvklo, Maria January 2021 (has links)
Despite the access to enormous amounts of data, there is a holdback in the usage of machine learning in the Cyber Security field due to the lack of interpretability of ”Black­box” models and due to heterogenerous data. This project presents a method that provide insights in the decision making process in Cyber Security classification. Hybrid Ensemble Methods (HEMs), use several weak learners trained on single data features and combines the output of these in a neural network. In this thesis HEM preforms phishing website classification with high accuracy, along with interpretability. The ensemble of predictions boosts the accuracy with 8%, giving a final prediction accuracy of 93 %, which indicates that HEM are able to reconstruct correlations between the features after the interpredability stage. HEM provides information about which weak learners trained on specific information that are valuable for the classification. No samples were disregarded despite missing features. Cross validation were made across 3 random seeds and the results showed to be steady with a variance of 0.22%. An important finding was that the methods performance did not significantly change when disregarding the worst of the weak learners, meaning that adding models trained on bad data won’t sabotage the prediction. The findings of these investigations indicates that Hybrid Ensamble methods are robust and flexible. This thesis represents an attempt to construct a smarter way of making predictions, where the usage of several forms of information can be combined, in an artificially intelligent way. / Trots tillgången till enorma mängder data finns det ett bakslag i användningen av maskininlärning inom cybersäkerhetsområdet på grund av bristen på tolkning av ”Blackbox”-modeller och på grund av heterogen data. Detta projekt presenterar en metod som ger insikt i beslutsprocessen i klassificering inom cyber säkerhet. Hybrid Ensemble Methods (HEMs), använder flera svaga maskininlärningsmodeller som är tränade på enstaka datafunktioner och kombinerar resultatet av dessa i ett neuralt nätverk. I denna rapport utför HEM klassificering av nätfiskewebbplatser med hög noggrannhet, men med vinsten av tolkningsbarhet. Sammansättandet av förutsägelser ökar noggrannheten med 8 %, vilket ger en slutgiltig prediktionsnoggrannhet på 93 %, vilket indikerar att HEM kan rekonstruera korrelationer mellan funktionerna efter tolkbarhetsstadiet. HEM ger information om vilka svaga maskininlärningsmodeller, som tränats på specifik information, som är värdefulla för klassificeringen. Inga datapunkter ignorerades trots saknade datapunkter. Korsvalidering gjordes över 3 slumpmässiga dragningar och resultaten visade sig vara stabila med en varians på 0.22 %. Ett viktigt resultat var att metodernas prestanda inte förändrades nämnvärt när man bortsåg från de sämsta av de svaga modellerna, vilket innebär att modeller tränade på dålig data inte kommer att sabotera förutsägelsen. Resultaten av dessa undersökningar indikerar att Hybrid Ensamble-metoder är robusta och flexibla. Detta projekt representerar ett försök att konstruera ett smartare sätt att göra klassifieringar, där användningen av flera former av information kan kombineras, på ett artificiellt intelligent sätt.

Page generated in 0.0551 seconds