Spelling suggestions: "subject:"gliazellen"" "subject:"gliazelle""
1 |
Untersuchungen zu Effekten neuroprotektiver Faktoren bei der Interaktion zwischen Glia- und Ganglienzellen der RetinaSchmidt, Manuela 24 January 2019 (has links)
No description available.
|
2 |
Quantitative Aspekte der Astrozyten von Wildtyp- und GFAP-/- VIM-/- LabormäusenTackenberg, Mark 10 June 2011 (has links) (PDF)
Astrozyten erfüllen unverzichtbare Aufgaben im ZNS. Sie sorgen im Normalfall unter anderem für eine ausgewogene K+/H2O-Clearence, regulieren den Gefäßdurchmesser, bilden die Blut-/Hirnschranke, betreiben “Transmitter-Recycling” und modulieren die interneuronale Signalweitergabe durch prä- und postsynaptische Mechanismen.
Die Funktionen und Einflüsse dieser zentralnervösen Gliazellen unter pathologischen Bedingungen im ZNS sind bei weitem nicht so gut untersucht, aber ebenso vielfältig. Eine ganz entscheidende Frage stellt sowohl unter physiologischen wie auch pathologischen Bedingungen das Vorliegen eines Überlappungsfaktors des von benachbarten Astrozyten okkupierten Areals dar. Betrüge ein solcher Faktor ! 1, könnten mehrere Gliazellen das gleiche Areal auch unter pathologischen Bedingungen durch ihre vielfältigen Funktionen unterstützen. Dahingegen würde das Ausbleiben eines Überlappungsgrades ! 1 bedeuten, dass bestimmte Gebiete im Neuropil anfälliger gegen Noxen oder degenerative Veränderungen wären.
Um diesen Überlappungsgrad zu untersuchen, wurden Hirnschnitte von Labormäusen mittels einer geeigneten Methodenkombination untersucht. Dabei wurde das durchschnittliche Volumen der Astrozyten im motorischen Kortex durch Golgi- Färbung, sowie deren Zellzahl pro Volumeneinheit durch immunhistochemische Färbungen untersucht und mittels konfokaler Laserscanning-Mikroskopie dokumentiert. Aus diesen Parametern ließ sich ferner der durchschnittliche Überlappungsfaktor im beschriebenen Areal berechnen.
Im Interesse dieser Arbeit standen dabei neben dem Unterschied im Überlappungsfaktor der Astrozyten zwischen Wildtyp- und GFAP-/- VIM-/- Knockout- Mäusen, als Beispiel für ein genetisch bedingtes Fehlen dieser Intermediärfilamente, auch der Einfluss des fortschreitenden Lebensalters, so dass für beide Genotypen sowohl junge- als auch alte Tiere untersucht wurden.
Folgende Ergebnisse lassen sich zusammenfassen:
1. Das Vorhandensein der Intermediärfilamente GFAP und Vimentin scheint keinen Einfluss auf das Volumen der Astrozyten im motorischen Kortex zu haben.
2. Das Lebensalter der V ersuchstiere steht mit dem V olumen der Astrozyten signifikant in Zusammenhang. Das von Astrozytenfortsätzen der knapp zwei Jahre alten Tiere okkupierte Volumen betrug mit durchschnittlich ca. 61.000 !m3 gut das Doppelte des Volumens in jungen Mäusen (ca. 28.000 !m3).
3. Die Zellzahl der Astrozyten im motorischen Kortex wird offenbar weder vom Lebensalter, noch vom Vorhandensein der Intermediärfilamente GFAP und Vimentin signifikant beeinflusst.
4. Der Überlappungsfaktor der Astrozyten im motorischen Kortex lag bei den jungen Kontroll-Tieren bei 0,87 und bei den jungen DKO-Tieren bei 0,96.
5. Der Überlappungsfaktor der Astrozyten im motorischen Kortex lag bei den alten Kontroll-Tieren bei 2,22 und bei den alten DKO-Tieren bei 2,10.
Die Ergebnisse zeigen, dass das Fehlen der Intermediärfilamente GFAP und Vimentin keinen Einfluss auf den Überlappungsgrad der Astrozyten im motorischen Kortex hat. Die Ursache für phänotypisch manifeste Erkrankungen, wie z.B. der Alexander Krankheit, welche durch ein fehlerhaft exprimiertes GFAP in Astrozyten hervorgerufen wird, ist demnach in anderen Mechanismen zu suchen.
Großen Einfluss auf den Überlappungsfaktor der Astrozyten hatte dagegen das Lebensalter der Versuchstiere, was sich mit neueren Erkenntnissen zur Funktion der Astrozyten im Hinblick auf Lernvorgänge, aber auch auf degenerative Prozesse, in Zusammenhang bringen lässt.
|
3 |
Quantitative Aspekte der Astrozyten von Wildtyp- und GFAP-/- VIM-/- LabormäusenTackenberg, Mark 28 April 2011 (has links)
Astrozyten erfüllen unverzichtbare Aufgaben im ZNS. Sie sorgen im Normalfall unter anderem für eine ausgewogene K+/H2O-Clearence, regulieren den Gefäßdurchmesser, bilden die Blut-/Hirnschranke, betreiben “Transmitter-Recycling” und modulieren die interneuronale Signalweitergabe durch prä- und postsynaptische Mechanismen.
Die Funktionen und Einflüsse dieser zentralnervösen Gliazellen unter pathologischen Bedingungen im ZNS sind bei weitem nicht so gut untersucht, aber ebenso vielfältig. Eine ganz entscheidende Frage stellt sowohl unter physiologischen wie auch pathologischen Bedingungen das Vorliegen eines Überlappungsfaktors des von benachbarten Astrozyten okkupierten Areals dar. Betrüge ein solcher Faktor ! 1, könnten mehrere Gliazellen das gleiche Areal auch unter pathologischen Bedingungen durch ihre vielfältigen Funktionen unterstützen. Dahingegen würde das Ausbleiben eines Überlappungsgrades ! 1 bedeuten, dass bestimmte Gebiete im Neuropil anfälliger gegen Noxen oder degenerative Veränderungen wären.
Um diesen Überlappungsgrad zu untersuchen, wurden Hirnschnitte von Labormäusen mittels einer geeigneten Methodenkombination untersucht. Dabei wurde das durchschnittliche Volumen der Astrozyten im motorischen Kortex durch Golgi- Färbung, sowie deren Zellzahl pro Volumeneinheit durch immunhistochemische Färbungen untersucht und mittels konfokaler Laserscanning-Mikroskopie dokumentiert. Aus diesen Parametern ließ sich ferner der durchschnittliche Überlappungsfaktor im beschriebenen Areal berechnen.
Im Interesse dieser Arbeit standen dabei neben dem Unterschied im Überlappungsfaktor der Astrozyten zwischen Wildtyp- und GFAP-/- VIM-/- Knockout- Mäusen, als Beispiel für ein genetisch bedingtes Fehlen dieser Intermediärfilamente, auch der Einfluss des fortschreitenden Lebensalters, so dass für beide Genotypen sowohl junge- als auch alte Tiere untersucht wurden.
Folgende Ergebnisse lassen sich zusammenfassen:
1. Das Vorhandensein der Intermediärfilamente GFAP und Vimentin scheint keinen Einfluss auf das Volumen der Astrozyten im motorischen Kortex zu haben.
2. Das Lebensalter der V ersuchstiere steht mit dem V olumen der Astrozyten signifikant in Zusammenhang. Das von Astrozytenfortsätzen der knapp zwei Jahre alten Tiere okkupierte Volumen betrug mit durchschnittlich ca. 61.000 !m3 gut das Doppelte des Volumens in jungen Mäusen (ca. 28.000 !m3).
3. Die Zellzahl der Astrozyten im motorischen Kortex wird offenbar weder vom Lebensalter, noch vom Vorhandensein der Intermediärfilamente GFAP und Vimentin signifikant beeinflusst.
4. Der Überlappungsfaktor der Astrozyten im motorischen Kortex lag bei den jungen Kontroll-Tieren bei 0,87 und bei den jungen DKO-Tieren bei 0,96.
5. Der Überlappungsfaktor der Astrozyten im motorischen Kortex lag bei den alten Kontroll-Tieren bei 2,22 und bei den alten DKO-Tieren bei 2,10.
Die Ergebnisse zeigen, dass das Fehlen der Intermediärfilamente GFAP und Vimentin keinen Einfluss auf den Überlappungsgrad der Astrozyten im motorischen Kortex hat. Die Ursache für phänotypisch manifeste Erkrankungen, wie z.B. der Alexander Krankheit, welche durch ein fehlerhaft exprimiertes GFAP in Astrozyten hervorgerufen wird, ist demnach in anderen Mechanismen zu suchen.
Großen Einfluss auf den Überlappungsfaktor der Astrozyten hatte dagegen das Lebensalter der Versuchstiere, was sich mit neueren Erkenntnissen zur Funktion der Astrozyten im Hinblick auf Lernvorgänge, aber auch auf degenerative Prozesse, in Zusammenhang bringen lässt.:BIBLIOGRAPHISCHE BESCHREIBUNG 1
INHALTSVERZEICHNIS 2
VERZEICHNIS DER ABKÜRZUNGEN 5
1. EINLEITUNG UND FRAGESTELLUNG 6
1.1 Das ZNS / Der Kortex 6
1.2 Gliazellen 9
1.2.1 Astrozyten 10
1.2.1.1 Morphologie / Morphometrie 10
1.2.1.2 Funktionen 12
1.2.1.3 reaktive Astrozyten 13
1.3 Intermediärfilamente 14
1.3.1 Funktionen 17
1.3.2 Intermediärfilamente und Zellwachstum 18
1.4 Ziel der Arbeit 19
2. MATERIAL UND METHODEN 24
2.1 Die Versuchstiere 24
2.2 Golgi-Färbungen 25
2.3 Immunhistochemische Färbungen 26
2.3.1 Die indirekte Nachweismethode 27
2.4 Das konfokale Mikroskop 28
2.5 Mikroskopische Untersuchung 30
2.5.1 Untersuchung der Volumina 30
2.5.2 Untersuchung der Zellzahlen 32
2.6 Bildauswertung 34
2.6.1 Volumenmessung / Golgi-Präparate 34
2.6.2 Zellzahl / Immunhistochemie 37
2.7 Berechnungen / Überlappungsfaktor / Statistische Auswertung 38
3. ERGEBNISSE 40
3.1 Volumina der Astrozyten 40
3.2 Zellzahl der Astrozyten 45
3.3 Der Überlappungsfaktor 48
3.4 Zusammenfassung 51
4. DISKUSSION 52
4.1 Kritik an der Methodik 52
4.1.1 Golgi-Färbungen zur Volumenmessung 52
4.1.2 S100-ß als Marker zur Zellzahl-Bestimmung 53
4.1.3 Schrumpfung der Präparate 54
4.2 Einordnung der Ergebnisse in die Literatur / Schlussfolgerungen 56
5. ZUSAMMENFASSUNG 60
6. LITERATUR 64
SELBSTSTÄNDIGKEITSERKLÄRUNG 68
LEBENSLAUF 69
DANKSAGUNG 71
|
4 |
Genetische Analyse entwicklungsbiologischer Funktionen des Neuregulin-1/ErbB SignalsystemsBritsch, Stefan 10 November 2004 (has links)
Neureguline (NDF, Heregulin, GGF ARIA, oder SMDF) sind EGF-ähnliche, extrazelluläre Signalmoleküle, die mit transmembranären Tyrosinkinaserezeptoren der ErbB-Familie interagieren. Neuregulin-1/ErbB Signale steuern während der Embryonalentwicklung und im adulten Organismus vielfältige zelluläre Prozesse, wie z. B. Proliferation, Migration und Differenzierung. In der vorliegenden Arbeit wurde die Rolle des Neuregulin-1/ErbB Signalsystems in der Entwicklung von Neuralleistenzellen und sich daraus entwickelnden Komponenten des peripheren Nervensystems (sympathisches Nervensystem und periphere Glia) untersucht. Neuregulin-1 Signale werden in Neuralleistenzellen und ihren Gliaderivaten durch ErbB2/ErbB3 Rezeptor-Heterodimere übertragen. Mit Hilfe von Mäusen mit gezielter Mutation (knock-out) des Neuregulin-1, ErbB2 oder ErbB3 Gens wurde gezeigt, daß Neuregulin-1/ErbB2/3 Signale die Migration sympathogener Neuralleistenzellen steuern. Mutante Tiere entwickeln daher eine hochgradige Hypoplasie des sympathischen Nervensystems. Neuregulin-1 Signale kontrollieren darüber hinaus die Entwicklung von Schwann Zellen. Die Unterbrechung des Neuregulin-1/ErbB2/3 Signalwegs in mutanten Mäusen führt zum Verlust von Schwann Zellen während der Embryogenese. Es wurde außerdem gezeigt, daß der Transkriptionsfaktor Sox10 die Expression von ErbB3 in Neuralleistenzellen kontrolliert. Sox10 und ErbB3 Mutanten besitzen daher übereinstimmende Defekte in der Neuralleistenzellentwicklung. Neben den ErbB3-abhängigen Funktionen von Sox10 wurde eine ErbB3-unabhängige Schlüsselfunktion von Sox10 bei der Differenzierung von Neuralleistenzellen zu peripherer Glia identifiziert. Das Neuregulin-1/ErbB2/3 Signalsystem und der Transkriptionsfaktor Sox10 besitzen also gemeinsam zentrale Funktionen in der Entwicklung peripherer Glia, steuern diesen Prozess aber über unterschiedliche Mechanismen und während unterschiedlicher Entwicklungsphasen. Sox10, ErbB2 und ErbB3 mutante Mäuse entwickeln neben dem Verlust von Schwann Zellen eine sekundäre Degeneration begleitender sensorischer und motorischer Neurone. Dies zeigt, daß periphere Glia Signale generiert, die essentiell sind für Integrität und Überleben begleitender Neurone. / Neuregulins (NDF, heregulin, GGF ARIA, or SMDF) are EGF-like growth and differentiation factors that signal through tyrosine kinase receptors of the erbB family. The neuregulin-1 proteins and their receptors play essential roles during embryonic development and in the adult. Functions of the neuregulin/erbB signaling system in developing neural crest cells and their derivatives (sympathetic nervous system, peripheral glial cells) were analyzed in mice with targeted mutations in the erbB2, erbB3, or neuregulin-1 genes. All three mutations cause severe hypoplasia of the primary sympathetic ganglion chain, and migration of sympathogenic neural crest cells to their target sites, where they differentiate into sympathetic neurons, depends on neuregulin-1 and its receptors. Neuregulin-1 signals are also essential for the development of Schwann cells. As a consequence, mice with targeted mutations in the neuregulin-1/erbB signaling system completely lack Schwann cells. Moreover, the HMG-box transcription factor sox10 is shown to control expression of erbB3 in neural crest cells. In accordance, sox10 and erbB3 mutant mice share phenotypes in the developing neural crest. Additionally, a novel, erbB3-independent developmental function of sox10 was identified: Sox10 is a key regulator for glial fate determination in undifferentiated neural crest cells. Thus, the transcription factor sox10 and the neuregulin-1/erbB signalling system both serve critical functions during development of peripheral glial cells. However, they act via different cellular mechanisms and during different developmental stages. At later developmental stages lack of peripheral glial cells in sox10, erbB2 and erbB3 mutant mice results in a severe degeneration of sensory and motor neurons. The comparison of the mutant phenotypes demonstrates, that peripheral glial cells generate essential signals for the survival and maintenance of accompanying neurons.
|
5 |
Genome-wide RNAi screening reveals glial phosphoethanolamine ceramide is critical for axonal ensheathment / Ein Genom-weiter RNAi-Screen zeigt, dass Phosphoethanolamin-Ceramid in Glia wichtig für das Umhüllen von Axonen istGhosh, Aniket 26 July 2012 (has links)
No description available.
|
6 |
Functional properties of the plasma membrane of human glioma initiating cells / Funktionelle Eigenschaften der Plasmamembran menschlicher GliomstammzellenBarrantes-Freer, Alonso 17 April 2012 (has links)
No description available.
|
7 |
Ko-Expression des astroglialen GFAP- und des oligodendrozytären PLP-Promotors in Müllerzellen der Retina: Aktivierung durch LäsionenLycke, Christian 07 January 2015 (has links) (PDF)
Die Dissertation befasst sich mit der Untersuchung der Ko-Expression des GFAP- und des PLP-Promotors in Müllerzellen der Netzhaut transgener Mäuse. Die verwendete Mauslinie ist tripel-transgen für den GFAP- und den PLP-Promotor sowie für einen ROSA26-Reporter.
Durch die Quantifizierung der EYFP-Expression in Müllerzellen konnte gezeigt werden, dass es nach akuter ischämischer Schädigung sowie einer angeborenen retinalen Degeneration in Müllerzellen zu einer Aktivierung des oligodendrozytären PLP-Promotors kommt. Weiterhin wurde festgestellt, dass die Aktivierung des Transkriptionsfaktors Sox-9, der sowohl für die Entwicklung der Müllerzellen als auch für die Oligodendrogenese von entscheidender Rolle ist, mit dieser Promotoraktivierung korreliert. Diese Ergebnisse implizieren, dass Müllerzellen im Rahmen ihrer Stammzelleigenschaften in der Lage sind, auf embryonale
Entwicklungsprozesse, die auch die oligodendrozytäre Zellreihe beinhalten, zurückgreifen zu können.
|
8 |
Ko-Expression des astroglialen GFAP- und des oligodendrozytären PLP-Promotors in Müllerzellen der Retina: Aktivierung durch Läsionen: Ko-Expression des astroglialen GFAP- und desoligodendrozytären PLP-Promotors in Müllerzellen der Retina:Aktivierung durch LäsionenLycke, Christian 26 June 2014 (has links)
Die Dissertation befasst sich mit der Untersuchung der Ko-Expression des GFAP- und des PLP-Promotors in Müllerzellen der Netzhaut transgener Mäuse. Die verwendete Mauslinie ist tripel-transgen für den GFAP- und den PLP-Promotor sowie für einen ROSA26-Reporter.
Durch die Quantifizierung der EYFP-Expression in Müllerzellen konnte gezeigt werden, dass es nach akuter ischämischer Schädigung sowie einer angeborenen retinalen Degeneration in Müllerzellen zu einer Aktivierung des oligodendrozytären PLP-Promotors kommt. Weiterhin wurde festgestellt, dass die Aktivierung des Transkriptionsfaktors Sox-9, der sowohl für die Entwicklung der Müllerzellen als auch für die Oligodendrogenese von entscheidender Rolle ist, mit dieser Promotoraktivierung korreliert. Diese Ergebnisse implizieren, dass Müllerzellen im Rahmen ihrer Stammzelleigenschaften in der Lage sind, auf embryonale
Entwicklungsprozesse, die auch die oligodendrozytäre Zellreihe beinhalten, zurückgreifen zu können.:Inhaltsverzeichnis ....................................................................................................................... 3
Bibliographische Darstellung ..................................................................................................... 5
Abkürzungsverzeichnis und Erläuterungen ................................................................................ 6
1 Einleitung ............................................................................................................................ 8
1.1 Die Retina als Teil des Auges ................................................................................................. 8
1.1.1 Aufbau .............................................................................................................................. 8
1.2 Die gliale Müllerzelle ............................................................................................................ 12
1.2.1 Definition und Morphologie der Müllerzellen ............................................................... 12
1.2.2 Funktion .......................................................................................................................... 13
1.2.3 Ursprung und Ontogenese der Müllerzelle ..................................................................... 14
1.3 Erkrankungen der Netzhaut .................................................................................................. 15
1.3.1 Akute Läsionen ............................................................................................................... 15
1.3.2 Chronische Erkrankungen der Netzhaut ......................................................................... 15
1.3.3 Die Rolle der Müllerzelle in der erkrankten Retina ....................................................... 16
1.4 Mausgenetik .......................................................................................................................... 18
1.4.1 Das Cre-loxP-System ..................................................................................................... 18
1.5 Pax-6 und Sox-9: Transkriptionsfaktoren spezifizieren das Zellschicksal ........................... 24
1.5.1 Die PAX-Familie ............................................................................................................ 24
1.5.2 SOX-9-Gene ................................................................................................................... 25
2 Ziele .................................................................................................................................. 26
3 Material und Methoden ..................................................................................................... 27
3.1 Material ................................................................................................................................. 27
3.1.1 Chemikalien .................................................................................................................... 27
3.1.2 Antikörper ....................................................................................................................... 27
3.1.3 Größenstandards ............................................................................................................. 28
3.1.4 Mauslinien ...................................................................................................................... 29
3.1.5 Geräte ............................................................................................................................. 31
3.2 Methoden .............................................................................................................................. 31
3.2.1 Genotypisierung transgener Mäuse ................................................................................ 31
3.2.2 Akute retinale Läsion durch Anlegen eines erhöhten Augeninnendrucks („high
intraocular pressure“, HIOP) .......................................................................................... 37
3.2.3 Herstellung und Fixierung der retinalen Gewebsproben ................................................ 37
3.2.4 Immunhistochemische Färbungen .................................................................................. 38
3.2.5 Mikroskopische Auswertung .......................................................................................... 39
3.2.6 Datenverarbeitung und Statistik ..................................................................................... 41
4 Ergebnisse ......................................................................................................................... 42
4.1 Technische Aspekte: Vergleich der Quantifizierung in Ganzpräparate und Querschnitte ... 42
4.1.1 Vergleich der Abbildungen ............................................................................................ 42
4.1.2 Auszählung Retina-Ganzpräparate ................................................................................. 43
4.1.3 Auszählung der Zellen in Querschnitten der Netzhaut ................................................... 45
4.1.4 Vergleich der Quantifizierung von Ganzpräparaten und Querschnitten ........................ 46
4.1.5 Quantifizierung ............................................................................................................... 48
4.2 Analyse der Reporterexpression in der Retina tripel-transgener Mäuse ............................... 49
4.2.1 Quantitative Auswertung GS-positiver Müllerzellen ..................................................... 49
4.2.2 Quantitative Auswertung EYFP-positiver Müllerzellen ................................................ 51
4.2.3 Auswertung des prozentualen Anteils der EYFP-positiven Müllerzellen ...................... 53
4.3 Auswertung der Transkriptionsfaktorexpression von Pax-6 und Sox-9 ............................... 56
4.3.1 Auswertung der Pax-6-positiven Müllerzellen ............................................................... 57
4.3.2 Auswertung der Sox-9-positiven Müllerzellen .............................................................. 60
5 Diskussion ......................................................................................................................... 63
5.1 Die GFAP-Expression in der Müllerzellgliose ..................................................................... 63
5.2 Auswertung und Vergleich der retinalen Ganzpräparate und Querschnitte ......................... 64
5.3 Die Untersuchung der Promotoraktivität nach retinaler Ischämie ........................................ 65
5.4 Die Untersuchung der Promotoraktivität bei angeborener retinaler Degeneration ............... 66
5.5 Die Rolle der Transkriptionsfaktoren Pax-6 und Sox-9 ........................................................ 68
5.5.1 Pax-6 ............................................................................................................................... 68
5.5.2 Sox-9 ............................................................................................................................... 69
5.6 Einordnung der Ergebnisse in die Zellbiologie der Müllerzelle ........................................... 72
6 Zusammenfassung ............................................................................................................. 74
7 Literaturverzeichnis .......................................................................................................... 77
8 Lebenslauf ......................................................................................................................... 83
9 Danksagung ....................................................................................................................... 84
10 Eigenständigkeitserklärung ............................................................................................... 85
|
Page generated in 0.0552 seconds