Spelling suggestions: "subject:"glicerol - células a combustível"" "subject:"1glicerol - células a combustível""
1 |
Desenvolvimento de uma célula a combustível de glicerol utilizando catalisadores bimetálicos / Development of a direct glycerol fuel cells using bimetallic catalystsAraújo, Brenda Roberta Silveira de 12 July 2017 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Tecnologias Química e Biológica, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-11-24T19:30:32Z
No. of bitstreams: 1
2017_BrendaRobertadaSilveiraAraújo.pdf: 3043386 bytes, checksum: 1ccf7a5f301cdee0f651ab1e1637e6b6 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-04-25T21:40:56Z (GMT) No. of bitstreams: 1
2017_BrendaRobertadaSilveiraAraújo.pdf: 3043386 bytes, checksum: 1ccf7a5f301cdee0f651ab1e1637e6b6 (MD5) / Made available in DSpace on 2018-04-25T21:40:56Z (GMT). No. of bitstreams: 1
2017_BrendaRobertadaSilveiraAraújo.pdf: 3043386 bytes, checksum: 1ccf7a5f301cdee0f651ab1e1637e6b6 (MD5)
Previous issue date: 2018-04-25 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). / O uso do glicerol como combustível é muito promissor, já que este álcool não é tóxico e possui alto ponto de ebulição (290 ºC) e uma densidade energética elevada (5 kWh kg-1). Vários estudos vêm sendo realizados aplicando-o como combustível em células a combustível alcalinas, onde pode ser oxidado na presença de catalisadores para gerar energia e produtos de oxidação com maior aplicabilidade e valor agregado. Neste trabalho foram preparados os eletrocatalisadores Pt49Ru51/C, Pt77Sn23/C, Pt75Bi25/C, Pt78Co22/C e Pt75Ni25/C e, todos com 20% de carga metálica aproximada. Os resultados deste trabalho demonstraram que PtRu e PtBi foram os eletrocatalisadores com maior potencial para a oxidação do glicerol. A presença do segundo metal promove atividades eletrocatalíticas do efeito bifuncional e eletrônico melhorando a oxidação do glicerol sem alterar o mecanismo de eletroxidação. Entretanto, favorece a formação de sais de ácidos orgânicos de três carbonos, especialmente o tartronato e glicerato de potássio, que são bastante utilizados pela indústria farmacêutica, com seletividades próximas a 80% no caso do catalisador PtRu para o primeiro sal orgânico. / The use of glycerol as fuel is very promising, since this alcohol is not toxic and possesses a high boiling point (290 ºC) and a high energy density (5 kWh kg-1). Several works have applied glycerol as fuel in alkaline fuel cells, where it can be oxidized for generating electricity and more valuable oxidation products. In this work, the electrocatalysts Pt49Ru51/C, Pt77Sn23/C, Pt75Bi25/C, Pt78Co22/C e Pt75Ni25/C were prepared, all of them with an approximate metallic loading of 20%. The results demonstrated that PtRu and PtBi were the catalysts with the highest potential for the glycerol electroxidation. The presence of the second metal promotes electrocatalytic activities of the bifunctional and electronic effect, improving glycerol oxidation without altering the electrooxidation mechanism. However, it favors the formation of three-carbon organic acid salts, especially potassium tartronate and glycerate, which are widely applied by the pharmaceutical industry, with a selectivity close to 80% in the case of the PtRu electrocatalysts for the first organic salt.
|
2 |
Aproveitamento do glicerol em uma célula a combustível microbiológicaSantos, João Bruno Costa 22 February 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-03-22T19:29:37Z
No. of bitstreams: 1
2016_JoãoBrunoCostaSantos.pdf: 2574292 bytes, checksum: 453f265afd05c1e3042bb01eb61e969c (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-03-28T19:47:36Z (GMT) No. of bitstreams: 1
2016_JoãoBrunoCostaSantos.pdf: 2574292 bytes, checksum: 453f265afd05c1e3042bb01eb61e969c (MD5) / Made available in DSpace on 2016-03-28T19:47:36Z (GMT). No. of bitstreams: 1
2016_JoãoBrunoCostaSantos.pdf: 2574292 bytes, checksum: 453f265afd05c1e3042bb01eb61e969c (MD5) / O glicerol é um subproduto obtido na produção de biodiesel e demanda vias de aproveitamento que consigam dar utilidade às grandes quantidades produzidas e não mais absorvidas pelas indústrias que convencionalmente o utilizavam como matéria-prima. Uma possível alternativa são as células a combustível, as quais, além de trata-lo, conseguem produzir de forma simultânea energia elétrica. Neste sentido, são de interesse a célula a combustível microbiológica, dada a natureza biodegradável do glicerol, no qual foi o foco deste trabalho de mestrado. Os estudos com as células a combustível microbiológicas alimentadas com glicerol começaram já com os primeiros resultados obtidos pela aluna de iniciação científica Amanda Queiroz Guimarães, sendo possível estabelecer a concentração ótima de substrato. Com base neste dado, o presente trabalho continuou estudando a influência de outras variáveis de operação, como o tempo de retenção hidráulico e o volume de lodos purgados, levando em consideração que são dois parâmetros de importância no controle dos sistemas microbiológicos. O primeiro estudo focou na otimização do tempo de retenção hidráulico, abrangendo um leque de valores que vão desde longos tempos, suficiente para os microrganismos biodegradarem o glicerol (24 dias), até tempos mais curtos (4,8 dias) onde se promove mais a atividade biológica. Os resultados obtidos evidenciaram a presença de um ótimo para um tempo de 7,5 dias onde se combinam o melhor desempenho eletroquímico em termos de densidade de corrente e máximo de potência da célula, junto com uma alta remoção de matéria orgânica e nutrientes da célula. A seguir, estudou-se a influência do volume purgado de lodos do ânodo da célula. Analisou-se volumes que foram desde 10 até 25 mL. Os resultados obtidos demonstraram a necessidade de controlar este parâmetro, já que valores acima de 20 mL apresentaram prejudiciais para a performance eletroquímica, apesar do sistema ainda possuir uma excelente capacidade de degradação de matéria orgânica e, de fato, um grande desenvolvimento de microrganismos (neste caso, não geradores de eletricidade). Recomenda-se, portanto, o uso de um volume de purga de lodos pequeno, ao redor de 10 mL, onde a população de microrganismos é suficiente, e favoreceu o desenvolvimento das colônias eletrogênicas, com uma aparente lenta cinética de crescimento, junto com excelentes capacidades de remoção de matéria orgânica e nutrientes. Uma vez otimizados os dois parâmetros anteriores, avaliou-se a utilização de diferentes eletrodos no ânodo visando melhorar ainda mais o desempenho eletroquímico. Optou-se pelo uso de materiais mais porosos, tais como espuma de grafite, espuma de carbono reticulado vítreo e tecido de carbono. Em função dos resultados, a utilização de materiais mais porosos foi benéfica em termos de densidade de corrente e potência da célula, já que estas estruturas, ao possuir uma maior área superficial comparado ao bastão de grafite padrão usado nos estudos anteriores, permitiram uma maior colonização do eletrodo por parte dos microrganismos. Especialmente benéfico resulta o uso da espuma de carbono reticulado vítreo, com a melhor performance eletroquímica e de degradação biológica. Com o melhor eletrodo e as melhores condições operativas, realizou-se um seguimento do processo de degradação do glicerol com o apoio da técnica de cromatografia líquida de alta eficiência. A detecção e quantificação de produtos demonstraram a simultaneidade das rotas de degradação oxidativa e fermentativa existente no ânodo da célula sendo gerados produtos pela primeira via tais como o ácido fórmico, maioritário, o ácido acético e o ácido pirúvico. Já os ácidos propiônico e butírico são evidências da existência da rota fermentativa. Estes resultados são a base e ponto de partida desta linha de pesquisa e servirão como referência para futuros trabalhos com este tipo de células. _______________________________________________________________________________________________ ABSTRACT / Glycerol is a by-product obtained in the biodiesel synthesis, demanding of utilization routes that turn valuable the large amounts produced and no more absorbed by the conventional industries that formerly used it as raw matter. One possible way is the fuel cells, which, aside for treating it, allow producing electricity simultaneously. In this way, Microbial Fuel Cells are of interest given the biodegradable nature of glycerol, and indeed, this type of fuel cells is the scope of this master project. The studies with glycerol-fed microbial fuel cells already began with the first results obtained by the scientific initiation student Amanda Queiroz Guimarães, fixing the most adequate substrate concentration. Based on them, the present work continues on studying the influence of other operating variable, such as the hydraulic retention time and the sludge purged volume, taking into account that are two key parameters in the control of biological systems. The first study focused on the optimization of the hydraulic retention time, from large retention times that guaranteed the complete glycerol biodegradation by the microorganisms (24 days) to shorter times (4,8 hours) where the biological activity is promoted (4,8 days). The results evidence the presence of an optimum for 7,5 days, where the best electrochemical performance, in terms of current density and maximum power, and a large organic matter and nutrients degradation are achieved. The next studied variable was the sludge purged volume from the cell anode. Volumes from 10 to 25 mL were analyzed. The obtained results demonstrated the necessity of controlling this parameter, since values above 20 mL showed very detrimental effects on the electrochemical performance, despite the system still presents a large capacity for degrading organic matter and for microorganisms growth (in this case, non-exoelectrogeneous bacteria). It is suggested then the use of a small sludge purged volume, around 10 mL, where the microorganism population is sufficient, it is favored the growth of exoelectrogeneous colonies, with an apparent slow growth kinetics, along with excellent capacities for nutrients and organic matter removal. Once optimized the two previous parameters, it was assessed the use of different electrodes in the anode, looking at further improving the electrochemical performance. More porous materials were evaluated, such as graphite foam, reticulated vitreous carbon foam and carbon cloth. According to the results, the utilization of porous materials is beneficial in terms of current density and power output, since these structures, with a larger surface area compared to the graphite rod used in the previous studies, allows a larger electrode colonization of the microorganisms. The use of the reticulated vitreous foam is especially successful, with the best electrochemical performance and biological degradation. With the best electrode and operating conditions, it was monitored of the glycerol degradation process with the aid of the high performance liquid chromatography. The detection and quantification of the products demonstrated the simultaneity of the oxidation and fermentative degradation routes existing in the cell anode, appearing formic acid, the main product, and acetic and pyruvic acid as evidences of the first route, and propionic and butyric as evidences of the second route. These results are the basis and kick-off point for this research line and will be used as reference for future studies with this type of fuel cells.
|
3 |
Desenvolvimento de uma célula a combustível de glicerol direto em meio alcalinoFrota Junior, Elcio Ferreira 10 December 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-05-05T16:59:39Z
No. of bitstreams: 1
2015_ElcioFerreiraFrotaJunior.pdf: 4289243 bytes, checksum: 31096e20e93bac099b80df7c2247ff30 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-05-26T16:45:48Z (GMT) No. of bitstreams: 1
2015_ElcioFerreiraFrotaJunior.pdf: 4289243 bytes, checksum: 31096e20e93bac099b80df7c2247ff30 (MD5) / Made available in DSpace on 2016-05-26T16:45:48Z (GMT). No. of bitstreams: 1
2015_ElcioFerreiraFrotaJunior.pdf: 4289243 bytes, checksum: 31096e20e93bac099b80df7c2247ff30 (MD5) / O presente trabalho é o primeiro na linha de células a combustível de glicerol direto do Laboratório de Desenvolvimento de Processos Químicos do Instituto de Química da UnB. O glicerol, subproduto obtido na produção de biodiesel, requer vias de aproveitamento que consigam gerenciar as grandes quantidades produzidas e não mais absorvidas pelas indústrias que convencionalmente o utilizavam como matéria-prima. Uma dessas alternativas são as células a combustível de glicerol direto em meio alcalino. Assim, este trabalho propõe a montagem de uma célula a combustível desta natureza em todas as etapas, desde o desenho e montagem da célula, a preparação dos catalisadores, a caracterização estrutural destes, a avaliação do desempenho eletroquímico, tanto nos estudos fundamentais quanto na célula a combustível real e, finalmente, uma análise do possível mecanismo de eletroxidação do glicerol na célula a combustível. A primeira etapa foi a da síntese de catalisadores monometálicos de Pt, Au e Pd, materiais padrão na oxidação de álcoois de cadeia curta em meio alcalino, sendo proposto a preparação de materiais com diferentes porcentagens metálicas (20, 30, 40 e 60% de metal para a Pt e o Pd; 10, 20, 30 e 40% de metal para o Au sobre o suporte de negro de carvão Vulcan XC-72R). Os eletrocatalisadores têm sido sintetizados satisfatoriamente por métodos de redução química simples, apresentando cargas metálicas reais próximas às nominais. Todos eles apresentam tamanho de partículas na faixa nanométrica com valores, em geral, maiores para as porcentagens metálicas mais elevadas, devido à menor superfície disponível de suporte de carbono. As distribuições mais homogêneas de tamanho das partículas correspondem aos catalisadores de Pt, enquanto o Au e, especialmente o Pd para as porcentagens mais elevadas, possui distribuições de partículas mais heterogêneas, fato inerente ao próprio procedimento de síntese. Todos os catalisadores preparados foram testados em uma célula de vidro de três eletrodos e na célula unitária de glicerol direto, sendo observado que todos os materiais são ativos, porém, com diferentes características para com a eletroxidação do glicerol. O material que apresenta o melhor desempenho é a platina, com o menor potencial de partida do processo eletroxidativo e a melhor densidade de corrente para uma porcentagem metálica de 60% na célula de vidro e entre 30-40% na célula unitária. Já o ouro rende as maiores densidades de corrente dentre os três metais, porém, requer potenciais mais elevados para tornar a superfície ativa, o que na célula unitária leva a um desempenho mais pobre. Neste caso, as maiores densidade de corrente nos dois meios de ensaio se apresentam para uma porcentagem de 20% Au/C. Finalmente o paládio apresenta um comportamento intermediário, com um potencial de partida do processo eletroxidativo compreendido entre os valores dos metais anteriores e densidades de corrente inferiores à platina. No entanto, na célula unitária, o paládio apresenta bons desempenhos, só ligeiramente inferiores à platina, especialmente para a porcentagem metálica de 20% Pd/C. A análise da distribuição de produtos revelou o tartronato de potássio como o principal produto da reação, bem acima dos restantes. No caso do paládio, são detectadas pequenas quantidades de glicerato, mesoxalato e traços de oxalato. Com o uso da platina, a situação é similar com a aparição de pequenas quantidades de glicolato e formiato. Finalmente, com o uso do ouro, apesar de se manter esta tendência, são detectadas maiores quantidades de oxalato e mesoxalato, o que evidencia a maior capacidade desta superfície para oxidar de forma mais efetiva o glicerol. Tal comportamento pode ser devido à necessidade de um maior sobrepotencial e, portanto, energia para poder eletroxidar o glicerol, permitindo a quebra de ligações C-C e a oxidação do álcool secundário. Não menos relevante foi observada a ausência de influência significativa da porcentagem metálica e da temperatura (no intervalo de estudo) no mecanismo de eletroxidação do glicerol. Estes resultados são a base e ponto de partida desta linha de pesquisa e servirão como referência para futuros trabalhos com este tipo de células. / The present work is the first in the direct glycerol fuel cell research line in the Laboratory of Chemical Process Development of the Institute of Chemistry/UnB. Glycerol, by product obtained in the biodiesel synthesis, demands of ways of utilization that allow the management the large amounts produced, no more absorbed by the industries that conventionally used it as raw matter. One alternative is the direct glycerol fuel cells in alkaline medium. Thus, this work proposes the mounting of a fuel cell of this nature following all the required steps: the design of the cell, the preparation of the catalysts, their physico-chemical characterization, the evaluation electrochemical cell performance, both fundamental and actual fuel cell studies and, finally, an analysis of the possible mechanism of the glycerol electroxidation in the fuel cell. At a first step, it was studied the synthesis of monometallic Pt, Au and Pd catalysts of, standard material in the oxidation of short chain alcohols in alkaline medium, being proposed the preparation of materials with different metallic percentages (20, 30, 40 and 60% of metal for Pt and Pd; 10, 20, 30 and 40% of metal for gold on the carbon black Vulcan XC-72R support). The electrocatalysts was synthesized satisfactorily by chemical reduction methods, rendering metallic loading close to the nominal ones. All the materials present particles size in the nanometric range with value, in general, larger for the high metallic percentages, due to the smaller available surface area of the carbon support. The most homogeneous particles size distribution corresponds to the Pt catalysts, whilst Au, and specially Pd with larger metallic percentages, possess particle distribution quite large, due to the own synthesis procedure. All prepared catalysts were tested in a glass cell with three electrodes and in direct glycerol single cell, being observed that all the materials are active. However, they present different feature for the glycerol electroxidation. The material that displays the best performance is platinum, with the smallest glycerol electroxidation onset potential and the best current density. Best results were obtained using 60% metallic percentage in the glass cell and between 30 and 40% in the single cell. Gold renders the maximum current density among the three materials, nonetheless, it requires of the largest potentials in order to turn the surface active, which leads to the poorest performance in the single cell. For this material, the largest current densities in the two cells were attained with 20% Au/C. Finally, palladium present an intermediary behavior, with a glycerol electroxidation onset potential between the values of the two former materials and current density slightly smaller than platinum. Nevertheless, in the single cell, palladium shows a good performance, just slightly below of those of platinum, especially for the metal percentage of 20% Pd/C. The analysis of the product distribution has revealed that potassium tartronate as the main reaction product, well above the others. In the case of palladium, small amounts of glycerate and mesoxalate are detected, with traces of oxalate. Using platinum, the results were similar, observing small amounts of glicolate and formate. Finally, using gold, in spite of maintaining the preponderance of tartronate, larger amounts of oxalate and mesoxalate were detected, evidencing the larger capacity of this surface to more effectively oxidize glycerol. Such behavior can be atributed to the requirement of a larger overpotential and, therefore, energy for electroxidizing glycerol, allowing the C-C scission and the secondary alcohol oxidation. No less relevant is the absence of significant influence of the metallic percentage and the temperature (in the range studied) on the glycerol electroxidation mechanism. These results are the kick-off point for this research line and will be undoubtedly useful for future work with this type of cell.
|
Page generated in 0.0738 seconds