• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gliogenesis and axon pathway formation in Drosophila

Fredieu, John Randal January 1991 (has links)
No description available.
2

Seasonal Changes in Cell Neogenesis in the Brain and Pituitary Gland A Study in the Adult Male Frog, Rana catesbeiana

January 2012 (has links)
abstract: Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism. / Dissertation/Thesis / M.S. Biology 2012
3

Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development / 哺乳動物の大脳新皮質発生過程においてHes5はニューロン産生およびグリア産生の移行タイミングを制御する

Shama, Bansod 24 November 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20756号 / 医博第4286号 / 新制||医||1024(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 伊佐 正, 教授 髙橋 良輔 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

Molecular Mechanisms Regulating Fate Determination of Cerebral Cortex Precursors

Gauthier, Andree S. 24 September 2009 (has links)
During development of the mammalian nervous system, neural stem cells generate neurons first and glia second, thereby allowing the initial establishment of neuronal circuitry, and subsequent matching of glial numbers and position to that circuitry. Multiple molecular mechanisms act in concert to control neural precursor expansion prior to neurogenesis, and to allow for an exponential generation of neurons while ensuring the maintenance of sufficient precursors to produce later-born neurons, glial cells and adult neural stem cells. Throughout cortical development, these processes are regulated in part by the precursors’ environment as well as intrinsic changes in precursors and their modes of division, which regulate the fate of daughter cells and the balance between self-renewal and differentiation. In the first part of this thesis, the protein tyrosine phosphatase SHP-2 was identified as a novel signaling protein that regulates the neurogenic to gliogenic switch by potentiating neurogenic signals and suppressing gliogenic signals until the appropriate developmental time point for astrogenesis, providing one mechanism whereby precursors integrate conflicting environmental cues. A Noonan Syndrome (NS)-associated activated SHP-2 mutation causes perturbations in neural cell genesis, which may contribute to the mild mental retardation and learning disabilities observed in NS patients. In the second part of this thesis, a novel Rho-regulatory pathway which includes the Rho-GEF Lfc and its negative regulator Tctex-1 were also found to regulate neurogenesis, potentially by directing mitotic spindle orientation during precursor divisions, thereby regulating the symmetric and asymmetric nature of radial precursor divisions.
5

Molecular Mechanisms Regulating Fate Determination of Cerebral Cortex Precursors

Gauthier, Andree S. 24 September 2009 (has links)
During development of the mammalian nervous system, neural stem cells generate neurons first and glia second, thereby allowing the initial establishment of neuronal circuitry, and subsequent matching of glial numbers and position to that circuitry. Multiple molecular mechanisms act in concert to control neural precursor expansion prior to neurogenesis, and to allow for an exponential generation of neurons while ensuring the maintenance of sufficient precursors to produce later-born neurons, glial cells and adult neural stem cells. Throughout cortical development, these processes are regulated in part by the precursors’ environment as well as intrinsic changes in precursors and their modes of division, which regulate the fate of daughter cells and the balance between self-renewal and differentiation. In the first part of this thesis, the protein tyrosine phosphatase SHP-2 was identified as a novel signaling protein that regulates the neurogenic to gliogenic switch by potentiating neurogenic signals and suppressing gliogenic signals until the appropriate developmental time point for astrogenesis, providing one mechanism whereby precursors integrate conflicting environmental cues. A Noonan Syndrome (NS)-associated activated SHP-2 mutation causes perturbations in neural cell genesis, which may contribute to the mild mental retardation and learning disabilities observed in NS patients. In the second part of this thesis, a novel Rho-regulatory pathway which includes the Rho-GEF Lfc and its negative regulator Tctex-1 were also found to regulate neurogenesis, potentially by directing mitotic spindle orientation during precursor divisions, thereby regulating the symmetric and asymmetric nature of radial precursor divisions.
6

Diferenciační potenciál polydendrocytů po fokální cerebrální ischemii / Differentiation potential of polydendrocytes after focal cerebral ischemia

Filipová, Marcela January 2012 (has links)
Ischemic injury leeds to sequence of pathophysiological events, which are accompanied by a release of growth factors and morphogens that significantly affect cell proliferation, migration and also their differentiation. Following ischemia, besides enhanced neurogenesis and gliogenesis in subventricular zone of the lateral ventricles and gyrus dentatus of the hippocampus, neurogenesis/gliogenesis also occurs in non-neurogenic regions, such as cortex or striatum. Recently, the attention was turned to a new glial cell type, termed polydendrocytes or NG2 glia. Under physiological conditions, these cells are able to divide and differentiate into mature oligodendrocytes due to they have often been equated with oligodendrocyte precursor cells. Based on recent reports, polydendrocytes are also able to generate protoplasmic astrocytes (Zhu et al., 2008) and neurons in vitro (Belachew et al., 2003), however their ability to differentiate into astrocytes or neurons under physiological or pathological conditions is still highly debated. Therefore, we have investigated the effect of different growth factors and morphogens, specifically brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and a morphogen sonic hedgehog (Shh), on...
7

Genetic Detection of Neurogenesis and Astrocytic Transformation of Radial Glia

Burns, Kevin Andrew January 2007 (has links)
No description available.
8

La perturbation du locus Nr2f1-K12 entraine une différenciation gliale précoce dans un nouveau modèle murin de mégacôlon aganglionnaire

Nguyen, Chloé My Anh 08 1900 (has links)
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12. / Hirschsprung disease is a congenital intestinal motility disorder characterized by an aganglionic segment in the distal colon. A genetic screen performed via random insertional mutagenesis in mice allowed identifying the Spot line, whose homozygotes suffer from an aganglionic megacolon. The analysis of mutant embryonic intestines revealed a decreased proliferation rate and a delay in migration of the enteric neural crest cell (eNCC) progenitors, secondary to their early glial differentiation, resulting in failure to properly colonize the intestine. Sequencing of the Spot genome indicated that the transgene was inserted into the K12-Nr2f1 locus on chromosome 13, a region devoid of genes associated with the disease, and disrupted in addition a highly conserved non-coding sequence. K12 is an uncharacterized long non-coding RNA (LncRNA) gene antisense to the Nr2f1 gene, which is involved in gliogenesis in the central nervous system. Sequencing of the eNCC transcriptome revealed an overexpression of Nr2f1 and short forms of K12 in Spot, and luciferase assays showed repressive activity of the conserved element. We observed the expression of K12 in the eNCC and its subcellular localization in transcriptionally active zones of the nucleus. With the recent emergence of LncRNA regulators and supposing that the regulation of Nr2f1 is done by its antisense K12, these data allowed us identifying two new candidate genes associated with a premature glial differentiation leading to aganglionic megacolon.
9

Analyse du rôle de la paire de gènes A830082K12Rik/Nr2f1 dans la gliogenèse du système nerveux entérique

Charrier, Baptiste 01 1900 (has links)
No description available.
10

Exploring Transcriptional Heterogeneity in the Postnatal SVZ / Explorer l'hétérogénéité transcriptionnelle dans la SVZ postnatale

Zweifel, Stefan 28 March 2018 (has links)
Une activité germinale persiste après la naissance dans des niches spécialisées du cerveau des mammifères, à savoir le gyrus denté de l'hippocampe et la zone sous-ventriculaire (SVZ) bordant le ventricule latéral. Les cellules souches neurales (NSC) de la SVZ postnatale se différencient en progéniteurs transitoires qui vont générer des neuroblastes migrant à travers la voie de migration rostrale vers le bulbe olfactif, où ils se différencient en neurones. La SVZ génère également des progéniteurs gliaux qui se dispersent dans le parenchyme voisin. Les travaux récents auxquels j'ai participé soulignent la nature hétérogène de la SVZ postnatale, composée de différents microdomaines générant des lignées neurales distinctes. Les objectifs de mon travail de thèse ont permis de : 1) développer de nouveaux moyens pour explorer l'hétérogénéité de la SVZ; et 2) d'identifier et d'étudier le rôle d'un facteur de transcription exprimé par une sous population des NSCs de la SVZ. Objectif 1: La SVZ est une région hautement complexe et irrégulière dans laquelle une forte activité germinale persiste après la naissance. Le caractère hétérogène de la SVZ est évident et des études récentes ont généré une très grande base de données de transcrits, qui sont différentiellement exprimés entre les microdomaines. Cependant, un outil approprié pour l'analyse rapide du niveau d'expression d'une protéine d'intérêt, le long des axes rostro-caudal et dorso-ventral de la SVZ est toujours manquant et nécessaire. Par conséquent, j'ai développé "FlashMap", un logiciel semi-automatique qui permet une analyse rapide des niveaux d'expression de protéines dans le SVZ, basé sur des mesures de densité optique après immunohistochimie. "FlashMap" génère des cartes thermiques facilement lisibles en deux dimensions, qui peuvent être superposées avec précision aux reconstructions tridimensionnelles du système ventriculaire pour une visualisation spatiale fine et rapide. Cette nouvelle approche accélérera la recherche sur la régionalisation de la SVZ, en permettant l'identification de marqueurs (e.g. facteurs de transcription) exprimés dans des régions discrètes de la SVZ. Objectif 2: J'ai utilisé des approches de transcriptomique et de « fate mapping » des NSCs pour étudier la relation entre l'expression régionale de facteurs de transcription et leur différenciation dans des lignées neurales distinctes. Mes résultats supportent un amorçage précoce des NSCs à produire différents types cellulaires en fonction de leur localisation spatiale dans la SVZ. Nos données identifient Hopx comme un marqueur d'une sous population de NSCs qui génère principalement des astrocytes. De façon intéressante, la manipulation de l'expression de Hopx montre des effets mineurs sur l'astrogénèse, mais entraîne des changements marqués quant au nombre de NSCs et de leur descendance. Dans son ensemble, Mes résultats mettent en évidence à la fois une hétérogénéité spatiale des NSCs postnatales ainsi que leur amorçage précoce à produire des types cellulaires distincts / Germinal activity persists in the postnatal mammalian brain in specialized niches, namely the dentate gyrus of the hippocampus and the subventricular zone (SVZ) surrounding the lateral ventricle. Neural stem cells (NSCs) of the postnatal SVZ differentiate into transient amplifying progenitors that will generate neuroblasts migrating through the rostral migratory stream, into the olfactory bulb, where they differentiate into neurons. The SVZ additionally generates glial progenitors that invade the nearby parenchyma. Recent work to which I have participated, highlights the heterogeneous nature of the postnatal SVZ in respect to different microdomains generating distinct neural lineages. The objectives of my PhD work were twice: 1) to develop new means to explore the heterogeneity of the SVZ; and 2) to identify transcription factors expressed by subpopulations of NSCs of the SVZ and acting in their differential specification. Objective 1: The SVZ is a highly complex and irregular region of ongoing postnatal germinal activity. The heterogeneous character of the SVZ is evident and recent studies generated enormous datasets of transcripts, which are differentially expressed between divergent microdomains. However, an appropriate tool for fast analysis of the protein level along the full rostro-caudal and dorso-ventral extend of the SVZ is still missing. Therefore, I developed “FlashMap”, a semi-automatic software that allows rapid analysis of protein levels in the full SVZ, based on optical density measurements after immunohistochemistry. “FlashMap” generates easy readable heatmaps in two dimensions, which can be accurately superimposed on three-dimensional reconstructions of the ventricular system for rapid spatial visualization and analysis. This new approach will fasten research onto SVZ regionalization, by guiding the identification of markers, such as transcription factors expressed in specific SVZ microdomains. Objective 2: I used transcriptomic as well as fate mapping approaches to investigate the relation between regional expression of transcription factors by NSCs and their acquisition of distinct neural lineage fates. Our results support an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identify Hopx as a marker of a subpopulation biased to generate astrocytes. Interestingly, manipulation of Hopx expression showed minor effects on astrogenesis, but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs, as well as their early priming toward specific lineages and suggest a role for Hopx in the evolution of SVZ germinal activity

Page generated in 0.0625 seconds