• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 9
  • 9
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La plasticité du système nerveux entérique au cours de l'inflammation : réexpression de PSA-NCAM dans un modèle de colite expérimentale chez le rat adulte

Ouellet, Philippe January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
2

La plasticité du système nerveux entérique au cours de l'inflammation : réexpression de PSA-NCAM dans un modèle de colite expérimentale chez le rat adulte

Ouellet, Philippe January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
3

Expression de PSA-NCAM dans le système nerveux entérique chez le rat au cours du développement et au cours de la réponse inflammatoire

Rhéaume, Catherine January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Rôle de l'apeline dans le contrôle de l'axe "intestin-hypothalamus-périphérie" : conséquences sur le métabolisme glucidique chez la souris normale et obèse/diabétique / Role of apelin on "gut-to brain-to peripheral" axis : consequences in the control of glucose metabolism in normal and obese/diabetic mice

Fournel, Audren 29 June 2016 (has links)
Au début de ce doctorat, plusieurs études avaient identifié l'intestin grêle, siège de l'absorption du glucose, en tant que premier organe impliqué dans le contrôle de l'homéostasie glucidique lors d'un repas. En particulier, il a été démontré que la détection entérique de glucose permettait d'impacter son utilisation par le muscle et le foie, via un relai central impliquant une libération hypothalamique de monoxyde d'azote (NO). De plus, notre groupe a également démontré qu'une altération de la détection entérique du glucose, associée à une réponse neuronale hypothalamique anormale, participait à la mise en place d'un Diabète de Type 2 (DT2). En plus de ces problèmes de détection de nutriments, les patients obèses et diabétiques souffrent de troubles de la motilité intestinale (en particulier d'une hypercontractilité intestinale), liés à une atteinte du Système Nerveux Entérique (SNE). En effet, ce dernier est constitué d'environ 600 millions de neurones interconnectés chez l'Homme, contrôlant les contractions des muscles lisses intestinaux. D'un point de vue régulation, le SNE communique en permanence avec le Système Nerveux Central (SNC) via des voies nerveuses afférentes et efférentes. L'équipe s'intéresse au rôle de l'apeline en tant que nouvelle cible thérapeutique potentielle pour traiter le DT2. En particulier, notre équipe a récemment montré que l'apeline était libérée par les entérocytes dans la partie proximale de l'intestin, et qu'à ce niveau elle contrôlait l'absorption intestinale du glucose. Cependant, le fait que l'apeline puisse également cibler les neurones du SNE, et donc moduler la contractilité intestinale, n'était pas encore démontré. Lors de ce travail de thèse, nous avons ainsi pu montrer qu'en fonction de sa concentration, l'apeline activait des populations neuronales entériques différentes provoquant une stimulation ou, au contraire, une inhibition des contractions duodénales. La stimulation de cette contractilité duodénale par de faibles concentrations d'apeline entraîne une augmentation de l'absorption intestinale de glucose, mais également une diminution de la libération de NO hypothalamique, aboutissant à une moindre utilisation de ce dernier par le muscle squelettique. A l'inverse, de fortes concentrations d'apeline sont associées à une diminution de cette activité duodénale, entraînant un retour de l'ensemble de ces paramètres à des niveaux contrôles. Dans un second temps, nous avons voulu tester si cette motilité duodénale pouvait être considérée comme une cible thérapeutique pour traiter le DT2. Pour cela, nous avons effectué un traitement oral quotidien, pendant une semaine, avec la concentration d'apeline capable de diminuer l'activité duodénale, chez des souris obèses-diabétiques. Cette stimulation chronique par l'apeline permet de restaurer la contractilité duodénale de ces souris diabétiques au même niveau que celle de souris saines. De plus, cet effet est associé à une amélioration de leur tolérance au glucose ainsi que leur index de résistance à l'insuline. Ainsi, ce doctorat a permis de décrire un nouveau mode de communication entre l'intestin et le cerveau dans le contrôle de l'homéostasie glucidique. En effet, moduler les contractions duodénales en modifiant l'activité du SNE permettrait non seulement d'impacter l'absorption intestinale de glucose, mais également d'activer un axe duodénum-hypothalamus aboutissant au contrôle de l'utilisation périphérique de glucose. Dès lors, ce couplage " SNE-contraction duodénale " représenterait une cible thérapeutique prometteuse dans le traitement de maladies métaboliques telles que le DT2. / Prior to this PhD, several studies had determined that the small intestine, the site of glucose absorption, is the first organ involved in the control of glucose homeostasis during food intake. In particular, enteric glucose detection has been demonstrated to impact its utilization by muscles and liver, via a central relay involving hypothalamic nitric oxide (NO) release. Moreover, our group has also demonstrated that an alteration of enteric glucose detection, associated with an abnormal hypothalamic neuronal response, participates in type 2 diabetes (T2D) development. In addition to these defaults of nutrients detection, obese and diabetic patients suffer from intestinal motility disorders (in particular intestinal hypercontractility), linked to an alteration of the Enteric Nervous System (ENS). The ENS is composed of 600 million interconnected neurons in humans, known to control intestinal smooth muscles. The ENS permanently communicates with the Central Nervous System (CNS) via afferent and efferent nervous messages. Our team studies the role of apelin as a new potential therapeutic target to treat T2D. In this context, our group has recently demonstrated that apelin is released by the enterocytes in the proximal part of the intestine. At this site, apelin controls intestinal absorption of glucose. However, it hadn't been addressed yet whether apelin is also able to target enteric neurons, and consequently modulate intestinal contractility. During this PhD, we have highlighted that, depending of its concentration, apelin activates different enteric neuronal populations, leading to stimulation or, on the contrary, inhibition of duodenal contractions. Stimulation of this duodenal contractility by low concentrations of apelin causes an increase in intestinal glucose absorption, but also a decrease in hypothalamic NO release, leading to a reduced utilization of glucose by skeletal muscle. Conversely, high concentrations of apelin are associated with a decrease in the duodenal activity, leading to the restoration of all these parameters at basal levels. Then, we wanted to test whether duodenal motility could be considered as a therapeutic target to treat T2D. We performed a daily oral treatment, during one week, with the concentration of apelin able to decrease duodenal activity in obese and diabetic mice. We have shown that this chronic apelin treatment restores duodenal contractility in diabetic mice, at a similar level to that observed in normal mice. Moreover, this effect is associated with an improved glucose tolerance and insulin resistance index. Thus, this PhD describes a new mode of communication between the intestine and the brain, in the control of glucose homeostasis. Indeed, the modulation of duodenal contraction by targeting ENS activity could not only impact intestinal glucose absorption, but also activate a duodenum-hypothalamus axis, leading to the control of peripheral glucose utilization. Consequently, the "ENS-duodenal contraction" coupling could represent a promising therapeutic target to treat metabolic diseases such as T2D.
5

La perturbation du locus Nr2f1-K12 entraine une différenciation gliale précoce dans un nouveau modèle murin de mégacôlon aganglionnaire

Nguyen, Chloé My Anh 08 1900 (has links)
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12. / Hirschsprung disease is a congenital intestinal motility disorder characterized by an aganglionic segment in the distal colon. A genetic screen performed via random insertional mutagenesis in mice allowed identifying the Spot line, whose homozygotes suffer from an aganglionic megacolon. The analysis of mutant embryonic intestines revealed a decreased proliferation rate and a delay in migration of the enteric neural crest cell (eNCC) progenitors, secondary to their early glial differentiation, resulting in failure to properly colonize the intestine. Sequencing of the Spot genome indicated that the transgene was inserted into the K12-Nr2f1 locus on chromosome 13, a region devoid of genes associated with the disease, and disrupted in addition a highly conserved non-coding sequence. K12 is an uncharacterized long non-coding RNA (LncRNA) gene antisense to the Nr2f1 gene, which is involved in gliogenesis in the central nervous system. Sequencing of the eNCC transcriptome revealed an overexpression of Nr2f1 and short forms of K12 in Spot, and luciferase assays showed repressive activity of the conserved element. We observed the expression of K12 in the eNCC and its subcellular localization in transcriptionally active zones of the nucleus. With the recent emergence of LncRNA regulators and supposing that the regulation of Nr2f1 is done by its antisense K12, these data allowed us identifying two new candidate genes associated with a premature glial differentiation leading to aganglionic megacolon.
6

Etude de la paroi intestinale dans un modèle murin d'interruption intestinale : rôles des cellules du SNE et des cellules neuroendocrines / Disorders of the intestinal wall in a rat model of intestinal obstruction : implication of the enteric nervous system and neuroendocrine system

Ballouhey, Quentin 29 May 2018 (has links)
But de l’étudeL’atrésie intestinale est une anomalie congénitale définie par une perte de la continuité digestive. Malgré une restauration chirurgicale précoce de cette continuité, surviennent durant les premiers mois de vie des troubles de la motilité digestive et des surinfections bactériennes chez un tiers des patients. Ces troubles fonctionnels étaient attribués jusque là principalement à des altérations du système nerveux entérique. Le but de cette étude était de confirmer cette hypothèse mais également d’élargir le champ des explorations aux autres composants du tube digestif.Matériel et méthodesLe modèle animal de l’atrésie chez le rat initialement décrit dans notre équipe a été utilisé pour caractériser les anomalies d’expression génique par transcriptomique. L’étude portait également sur la maturation digestive chez des fœtus de rat contrôle entre un stade de développement embryonnaire E15 et E21. Des modifications en amont et en aval de l’obstruction ont été étudiées en prélevant deux segments successifs de 1 cm par cette approche globale transcriptomique puis précisées par RT-PCRq et confirmées par des techniques immunohistochimiques et de microscopie électronique. RésultatsChez les fœtus témoins, l’expression génique montre une décroissance physiologique pour le SNE et une augmentation pour les systèmes neuroendocrine et épithélial de E15 à E21. Concernant les fœtus avec atrésie, les modifications concernent quasi exclusivement le segment d’amont avec une augmentation du calibre intestinal, de l’épaisseur musculaire et une accélération globale de la maturation. Une redistribution des sous types neuronaux est constatée dans le segment d’amont ainsi qu’une augmentation de l’expression du système neuro endocrine. Pour ces deux systèmes, le segment d’aval est peu modifié. Des modifications importantes du système épithélial sont observées en amont comme en aval avec pour conséquence probable une altération de la barrière intestinale et du système anti infectieux.ConclusionCes résultats montrent que les changements prédominent dans le segment en amont de l’atrésie alors que le segment d’aval était parfois considéré comme le plus pathologique. De plus, il a été retrouvé des changements inattendus du système neuroendocrine et épithélial qui sous tendent une implication non exclusive du SNE. D’autres recherches sont nécessaires pour confirmer ces données et les exploiter dans une démarche thérapeutique. / Aim of the studyIntestinal atresia is a rare congenital affection with postoperative motility disorders, leading sometimes to death. Previous related studies mainly focused on enteric nervous system (ENS) alterations as it was identified to cause abnormal peristalsis. The aim of the study was to expertise the underlying pathological conditions of intestinal atresia using a global approach, before focusing on ENS and neuroendocrine cells in order to precise the presumptive involvement of the different layers of the intestinal wall.MethodsPreliminary transcriptomic approach was elected to screen global gene expression involved in intestinal development and atresia-linked disorders in the rat model previously described by our team. Rat embryos were assigned to atretic group and controls embryos at different stages of development ED15, ED17, ED19 and ED21. Two successive intestine samples of 1 cm were harvested in the proximal segment and in the distal one. The pattern of gene expression was further assessed by immunohistochemistry, electron microscopy and RT-qPCR. Main resultsA physiological decrease in gene expression for enteric nervous system markers and an increase for neuroendocrine and epithelial system was observed on controls from stages ED15 to ED21. Regarding affected embryos, structural modifications concerned the proximal segment with increased muscular layer and a significant disruption including global accelerated maturation was observed in the proximal segment with increased gene expression of neuroendocrine system. Distal segment was comparable to controls for the two systems. Important modifications were noted concerning the epithelial system with consequent abnormalities of the gut barrier and anti infectious functions.ConclusionsFetal intestinal obstruction results in a disrupted gut development predominant in the proximal segment. The distal segment and the ENS were poorly concerned by theses changes. Neuroendocrine and epithelial cells underwent significant unexpected changes, supporting the evidence that ENS do not play an exclusive role in the pathways of intestinal motility disorders.
7

Intéractions neuronales lors de la formation des circuits crâniens / Neuronal interactions during the formation of cranial circuits

Outin Tamraz, Eve 01 September 2015 (has links)
Deux des trois divisions du système nerveux viscéral – le système nerveuxparasympathique et le système nerveux entérique – sont associés aux nerfscrâniens (le troisième, le système nerveux sympathique, est associé aux nerfsspinaux). Cette étude est centrée sur les nerfs crâniens et sur les ganglionsqui leur sont associés ; plus précisément sur les stratégies cellulaires ayantlieu lors de leur ontogenèse.Je propose des principes unificateurs concernant les interactions neuronalesmises en jeu lors de la formation des nerfs crâniens branchiomériques ainsiqu’un nouveau mode de migration des précurseurs des ganglionsparasympathiques couplé à la migration de leurs partenairespréganglionnaires jusqu’au site de formation du ganglion. Enfin, je présentecertaines observations préliminaires suggérant que les précurseurs dusystème nerveux entériques utilisent ce même modus operandi pour envahirl’oesophage. / Two of the three divisions of the visceral nervous system —theparasympathetic and the enteric nervous systems— are associated withcranial nerves (the third one, the sympathetic division, being associatedwith spinal nerves). This work is focused on cranial nerves and associatedganglia and more particularly on the cellular strategies presiding over theirontogeny and wiring.I propose unifying principles of neuronal interactions that govern theformation of branchiomeric cranial nerves, as well as a novel migrationpathway followed by parasympathetic precursors, which use theirpreganglionic nerves to migrate to the site of ganglion formation. Finally, Ipresent preliminary observations suggesting that the enteric neuronalprecursors use the same trick to populate the esophagus.
8

Analyse du rôle de la paire de gènes A830082K12Rik/Nr2f1 dans la gliogenèse du système nerveux entérique

Charrier, Baptiste 01 1900 (has links)
No description available.
9

Effet de l'anticipation sur les phénomènes douloureux liés à la distension rectale chez des patients ayant une maladie de Crohn en rémission : étude en IRM fonctionnelle / Effect of anticipation on visceral pain induced by rectal distension in quiescent Crohn’s disease : a fMRI study

Rubio, Amandine 16 June 2014 (has links)
La maladie de Crohn est caractérisée par l'alternance de phases de rémission et de poussées d'inflammation intestinale, de survenue imprévisible. L'objectif de la thèse était d'étudier l'effet, en terme d'activité cérébrale (IRMf), de l'incertitude dans l'anticipation de la survenue d'une douleur viscérale dans la MC en rémission. Les résultats majeurs montrent que dans la MC, cette phase est associée à une hyperactivation significative, par rapport au sujet sain, du cortex cingulaire antérieur et postérieur, de l'insula, du thalamus et de l'amygdale. Il s'agit de régions clés dans la gestion sensorielle, cognitive et émotionnelle de la douleur. En conclusion, la MC est associée à une hyperréactivité cérébrale liée au caractère incertain de la survenue d'une douleur viscérale. Ceci peut expliquer une plus grande vulnérabilité des patients face aux effets du stress sur leurs symptômes et le cours de leur maladie et l'efficacité des thérapies cognitivo-comportementales. / Crohn's disease (CD) is a chronic recurring inflammatory bowel disease, with unpredictable recurrence of flares; this unpredictability leads to great anticipatory anxiety and stress. The aim of this thesis was to study the effect, in terms of brain activity (fMRI), of uncertainty in the anticipation of visceral pain in quiescent CD. Le main results show that in CD, uncertainty is associated with hyperactivity in the anterior and posterior cingulate cortex, insula, thalamus and amygdala. These are key regions in the regulation of sensory, cognitive and emotional aspects of pain. In conclusion, CD comprises excessive cerebral reactivity linked to the uncertain character of the occurrence of visceral pain. This might account for the greater vulnerability of CD patients towards the effects of stress on their symptoms and the course of their disease, as well as the efficacy of behavioral therapies that aim at modifying the activity of limbic structures.
10

Fonction et interaction entre plusieurs gènes impliqués dans les syndromes de Waardenburg et de Mowat-Wilson

Stanchina, Laure 05 November 2009 (has links)
Les cellules de la crête neurale se caractérisent par leur capacité de migration dansl’embryon et la variété des types cellulaires qu’elles sont capables de générer (mélanocytes,système nerveux entérique (SNE) et périphérique). Chez l’homme, plusieurs maladiescongénitales affectant des organes et tissus divers, ont pour origine une anomalie demigration, prolifération, survie ou différenciation de ces cellules. Au laboratoire, nousétudions deux d’entre elles, le syndrome de Waardenburg-Hirschsprung (WS4- anomalie depigmentation, surdité et maladie de Hirschsprung (HSCR : anomalie entérique)) et lesyndrome de Mowat et Wilson (MWS – retard mental sévère, dysmorphie faciale avec ousans HSCR). A l’heure actuelle, quatre gènes ont été impliqués : l’endothéline 3 (EDN3) etson récepteur à sept domaines transmembranaires EDNRB et les deux facteurs de transcriptionZEB2 et SOX10. Au cours de ma thèse, nous avons montré que des délétions de SOX10 sontégalement responsables de 15% des cas de WS2 (défauts de pigmentation et surdité sansHSCR), élargissant le spectre des phénotypes liés à une mutation au sein de ce gène(Bondurand, Dastot-Le Moal, Stanchina et al. Am. J Hum. Genet, 2007).Parallèlement à ces études génétiques, nous avons souhaité mieux définir la fonction et lesinteractions entre les différents gènes impliqués dans le WS4 (SOX10, EDN3 et EDNRB).Pour cela, nous avons croisé les modèles murins invalidés pour ces gènes, et comparé lephénotype des simples et doubles mutants. A travers cette analyse phénotypique, nous avonsdémontré qu’une interaction entre ces molécules est nécessaire au développement normal duSNE et des mélanocytes dérivés de la crête neurale. En effet, par rapport aux simples mutants,les doubles mutants Sox10;Edn3 et Sox10;Ednrb présentent une augmentation de ladépigmentation, et une forte aggravation du phénotype entérique. Le suivi du devenir descellules formant le SNE au cours du développement nous a permis de montrer quel’aggravation du phénotype entérique est due à une diminution du pool de cellulesprogénitrices par apoptose (Stanchina et al. 2006).Dans la continuité des travaux déjà réalisés, nous avons voulu améliorer notrecompréhension du rôle joué par le gène du MWS : ZEB2, et étudier ses interactions avec lesgènes du WS4. Dans un premier temps, nous avons analysé l’effet de l’expression constitutiveou l’inhibition de ce facteur sur la survie, prolifération et différenciation des cellulesprogénitrices du SNE à l’aide d’un système de culture de progéniteurs entériques disponibleau laboratoire. Nos résultats suggèrent un effet répresseur de ZEB2 sur la différenciationneuronale. Ce facteur pourrait donc être nécessaire au maintien du pool de cellulesprogénitrices dans un état indifférencié. Nous avons ensuite étudié les interactions entre ZEB2et les gènes du WS4. Nous avons croisé les souris portant une invalidation du gène ZEB2 avecles souris invalidées pour SOX10 ou portant une mutation de EDN3 ou EDNRB, et démontréqu’une interaction entre ZEB2 et SOX10 est nécessaire au développement normal du SNE. Eneffet, par rapport aux simples mutants, les doubles mutants présentent une forte aggravationdu phénotype entérique, due à une diminution de la prolifération des cellules progénitrices et àune augmentation de la différenciation neuronale. L’analyse phénotype des mutantsZeb2;Edn3 et Zeb2;Ednrb suggère également l’existence d’une interaction entre ces troismolécules, mais l’origine du défaut entérique reste inexplorée.Ces études nous ont permis de mieux appréhender les réseaux moléculaires mis en place aucours du développement du SNE, de comprendre l’origine des anomalies entériques observéeschez les patients, améliorant leur prise en charge. / To understand in more details the molecular and cellular bases of hereditary diseases resulting from defects of neural crest (NC) development, we study several neurocristopathies, in particular Waardenburg syndrome (WS – pigmentary abnormalities and hearing loss), and Mowat-Wilson syndrome (MWS, severe mental retardation, facial dysmorphy, with or without HSCR (congenital megacolon)). To date, about ten causative genes have been identified, among which are the seven transmembrane domain receptor EDNRB and its ligand endothelin 3 (EDN3), the two transcription factors SOX10 and ZEB2.We contributed to the research efforts engaged to unravel these disorders. In particular, we identified the first mutations of SOX10 in patients presenting with WS4 (association of WS with HSCR disease) and WS2 (Bondurand, Dastot-Le Moal, Stanchina et al. Am. J Hum. Genet, 2007), and participated to functional studies describing its role during enteric nervous system (ENS) development. More recently, we identified the gene ZEB2 as responsible for MWS. The goal of my thesis was to understand the function of these genes and their interaction during the development of NC and ENS in particular. For this purpose, we combined an in vitro approach (isolation of ENS progenitors) to in vivo experiments (phenotype analysis of simple and double mutant mice). We demonstrated that an interaction between SOX10, EDN3 and EDNRB is necessary for the normal development of the ENS and melanocytes (Stanchina et al. 2006), and then focused our efforts in understanding the function of ZEB2 during the development of the ENS as well as its interactions with WS4 genes. Preliminary results suggest that ZEB2 inhibition accelerates neuronal differentiation in vitro. In the same time, generation of Zeb2;Sox10, Zeb2;Edn3 and Zeb2;Ednrb have been realized. Through phenotype analysis of Sox10;Zeb2 double mutants, we showed that a coordinated and balanced interaction between these two genes is required for normal ENS development. Indeed, double mutants present with more severe ENS defects due to decreased proliferation of enteric progenitors and increased neuronal differentiation from E11.5 onwards. These data revealed that crosstalks between these two transcription factors are crucial for proper ENS development. Analysis of Zeb2;Edn3 and Zeb2;Ednrb double mutant suggest also an interaction between these genes. Future experiments will help us to confirm these results and to determine the cellular and molecular origin of these interactions. These studies will enable us to better apprehend the molecular bases of these diseases, and to understand the origin of the enteric anomalies observed in patients. This knowledge may also help to develop new therapeutic strategies

Page generated in 0.4385 seconds