• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • Tagged with
  • 12
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Améliorer la comprehension moléculaire du syndrome de Waardenburg / Enhancing the molecular understanding of Waardenburg Syndrome

Issa, Sarah 05 May 2017 (has links)
Le syndrome de Waardenburg (WS) est une neurocristopathie englobant des anomalies auditives et pigmentaires et est due à l'absence de mélanocytes dans les cheveux, la peau, les yeux et la cochlée. D'autres signes cliniques comme les anomalies musculo-squelettiques ou craniofaciales, la maladie de Hirschsprung ou des anomalies neurologiques caractérisent les différents sous-types de ce syndrome (WS1-WS4).Depuis la mise en évidence de PAX3 en 1992, cinq gènes majeurs ont été liés au WS. Néanmoins, un grand nombre de cas restent inexpliqués, particulièrement dans le WS2 qui est le sous-type le plus difficile à diagnostiquer cliniquement, du fait de l’absence d’autre signe caractéristique. Les cinq principaux gènes, PAX3, MITF, SOX10, EDNRB et EDN3, semblent faire partie d'un réseau de régulation génique.Le but de mon projet de doctorat portait sur l’amélioration de la compréhension moléculaire et génétique du WS2. Ainsi, un séquençage d’exome a été réalisé sur des trios et des familles atteints de WS2.Après l'identification d'une mutation de EDNRB (précédemment impliqué dans le WS4) chez un patient présentant un WS2, le criblage d'autres cas a révélé des variations supplémentaires dans ce gène. Des investigations cliniques complémentaires, des études moléculaires et des tests fonctionnels in vitro ont révélé un mode d'hérédité dominant avec une pénétrance incomplète. Nous avons estimé que les mutations du gène EDNRB étaient responsables de 5-6% des cas de WS2. Cette découverte contribue à une meilleure compréhension des voies de signalisation moléculaires de ce syndrome et confirme sa complexité génétique. / Waardenburg Syndrome (WS) is a neurocristopathy that encompasses both auditory and pigmentary abnormalities and is usually due to an absence of melanocytes from the hair, skin, eyes and cochlea. Additional clinical findings such as musculoskeletal or craniofacial abnormalities, Hirschsprung disease or neurological deficiencies characterize the different subtypes of this syndrome (WS1-WS4).Starting with PAX3 in 1992, five major genes have been linked to WS. Nevertheless, a lot of cases remain unexplained, especially in WS2, which is the most difficult subtype to diagnose on the clinical point of view as it lacks any other feature. The five main genes; PAX3, MITF, SOX10, EDNRB and EDN3, seem to be part of a gene regulatory network.My PhD project was to enhance the molecular and genetic understanding of WS2. To do so, whole exome sequencing was performed on trios and families with WS2. After the identification of a mutation in EDNRB (previously involved in WS4) in a WS2 patient, screening of other cases revealed additional variations in this gene. Complementary clinical investigations, molecular studies and in vitro functional tests unraveled a dominant mode of inheritance with incomplete penetrance. We evaluated EDNRB mutations to be responsible for 5-6% of WS2 cases. This discovery helps in better understanding the molecular pathways of this syndrome and further confirms its genetic complexity.
2

Genetic study of a family segregating Waardenburg-Shah syndrome

Cui, Long, 崔龙 January 2012 (has links)
Waardenburg-Shah syndrome (WS4, MIM_277580) is a congenital developmental disorder characterized by pigmentary abnormalities of the skin, eyes and hair, sensorineural deafness and intestinal aganglionosis (HSCR; Hirschsprung disease). Mutations in the coding regions of EDN3, EDNRB, or SOX10 account for 65-85% of the WS4 patients. These mutations are not fully penetrant, contributing to the phenotypic variability of WS4. We screened these genes in a three-generation family (14 individuals; three members affected with HSCR only and one affected with “partial’ WS4 –iris heterochromia and HSCR-). A novel heterozygous missense mutation was identified in EDNRB. EDNRB encodes the EDNRB receptor, which is essential for the differentiation of the neural crest cells into melanocytes, enteric ganglia and Schwann cells. The mutation was present in four affected and three unaffected family members. In the EDNRB isoforms 1 and 2, the mutation results in the replacement of the translation initiation codon methionine (Met) with a valine (Val) and such replacement (M1V) would theoretically abolish the use of the translation initiation codon. However, in EDNRB isoform 3, the replacement is at Met91 (M91V) and is predicted benign. Since different EDNRB transcripts are expressed concomitantly in the still developing newborn's gut, we theorized that the intra-familial variability of the phenotype could be related to the expression ratio between benign and damaging isoforms. We examined the consequences of M1V or M91V in their respective isoforms. Constructs containing either wild-type cDNA of isoform 1 and 3 or their mutated counterpart were transiently transfected into Human Embryonic Kidney 293 cell (HEK293). Confocal and immunoblot experiments showed that EDNRB M1V generated a shortened protein (starting from Met46); the wild-type-EDNRB isoform 3 or its mutant (p.M91V) were only found in the cytosol. Although EDNRB M1V was able to generate a shorter protein, the later failed to translocate onto the cell membrane, theoretically, affecting signal-transduction. Isoform 3 did not seem to play a role as cellular receptor. We also identified a c.-248G/A rare change at the 5’-untranslated region (5’UTR) of EDN3 (EDNRB ligand) which was predicted to affect translation efficiency. The presence of this variant in affected individuals but not in healthy carriers of the EDNRB mutation, suggests that both variants are necessary for the disease manifestation. Variations within the disease phenotype may be due to each individual’s genetic background. To identify other susceptibility loci, we carried out whole-genome linkage scan in this family using a high density SNP assay. Merlin software was used for parametric and non-parametric linkage. A susceptibility locus on chromosome 4q13.3-q24 was identified by both nonparametric and parametric linkage analyses, with LOD scores of 1.204 and 1.7109 respectively. Haplotype analysis refined the region to a 27.76 cM interval, in which genes involved in neuron development reside. To conclude, the novel EDNRB M1V mutation in this family may lead to HSCR and/or WS4 when in conjunction with other genetic lesions, such as the EDN3 5’UTR rare variation and/or a not yet identified susceptibility locus on chromosome 4q13.3-q24. / published_or_final_version / Surgery / Master / Master of Philosophy
3

Caractérisation des nouveaux mécanismes au cour du développement normal et pathologique de la Crête Neurale : interaction entre SOX10 et p54NRB et rôle d'editing / Characterization of New Molecular Mechanisms Underlying Neural Crest Development and Pathologies : Interplay Between SOX10 and p54NRB and Role of Editing

Kavo, Anthula 30 November 2015 (has links)
Résumé non transmis / SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg-Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, and about half of which are redistributed in vitro to nuclear bodies of undetermined nature and function. Here, we reported that the paraspeckle protein p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, and is a member of the Drosophila behavior Human Splicing (DBHS) protein family, interacts and acts synergistically with SOX10 to regulate several target genes. Interestingly, this multifunctional protein, as well as two other members of the DBHS protein family, co-localized with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type SOX10 in mutant-induced foci. However, only foci forming mutants exclusively found in the nucleus altered synergistic activity between SOX10 and p54NRB. We proposed that such a dominant negative effect may contribute to or be at the origin of the progressive neurological phenotype observed in affected patients.One of the roles of p54NRB is the regulation of gene expression via nuclear retention, by binding to hyperedited IRAlu sequences this protein blocks their efficient export to the cytoplasm (Zhang and Carmichael., 2001), we then decided to get into the world of editing. Editing, is a molecular mechanism characterized by the deaminase conversion of adenosines into inosines (A-to-I). In mammals, this molecular modification, is performed by a cluster of three enzymes named Adenosine deaminases acting on RNA (ADARs 1-3) (Wagner RW et al., 1989).In order to evaluate the role of ADAR1 in NC development, we decided to conditionally invalidate the expression of this enzyme using the NC specific HtPA-Cre line. Two main crossing strategies were followed, one including the Rosa26R-LacZ marker (RADR crossing) to track the NCCs and one not (CADR crossing). Globally, the Adar1 deficient pups harvested from the CADR crossing presented with 100% mortality within the first three days after birth. The survival rate of the mutants generated using the second strategy (RADR) was higher, however, none of the mutants survived up to P30. In general, the mutants of the latest crossing, presented with pleiotropic NC phenotype: abnormal melanocyte, ENS and sciatic nerve defects were observed.
4

Analysis of Sox10 target genes in zebrafish early development

Chipperfield, Thomas Richard January 2009 (has links)
The neural crest is a transient population of cells that forms a diverse range of derivatives in vertebrate embryos. Neural crest cells also migrate extensively throughout the embryo. The specification of a number of neural crest derivatives, including pigment cells and neurons and glia of the peripheral nervous system, is dependent on the transcription factor Sox10. In sox10 mutant zebrafish embryos, these neural crest derivatives fail to specify and subsequently the cell differentiation and migration fails leading to apoptosis. Sox10 mutant embryos also display an ear defect although the precise role of Sox10 in the ear is less well defined. Thus Sox10 controls an extensive gene regulatory network that drives the development of an important subset of neural crest derivatives and also functions during ear development. This gene regulatory network is currently poorly defined. The aim of this project was to identify genes that are both direct and indirect targets of Sox10 to further elucidate this gene regulatory network. To achieve this, a microarray approach was adopted. Initially, fluorescence activated cell sorting was employed to enrich for sox10 expressing cells from 24 hours post fertilization sox10:GFP transgenic embryos. The transcriptomes of WT and sox10 mutant cells were compared by microarray analysis to identify differentially regulated genes. A large number of target genes were identified by this method and by an unbiased in situ hybridization screen, 28 genes were validated. Of these, 23 genes were expressed in cells of the neural crest and down-regulated in sox10 mutant embryos. The majority of these genes were expressed in cells of the melanocyte and xanthophore lineages. 5 genes were expressed in the ear (otic vesicle) of which three otic vesicle genes were down-regulated while two otic vesicle genes were up-regulated in sox10 mutant embryos. Unfortunately due to time constraints, a study into the function of one of these target genes could not be completed. The series of validated genes identified during this project has opened new opportunities for research and has identified a number of highly expressed marker genes that will be useful in future studies. In addition, the microarray data presented will be a useful resource to aid the identification of further targets of Sox10.
5

Le facteur de transcription SOX10 fonction au cours du développement, dysfonctionnement dans les malformations congénitales /

Girard, Mathilde Goossens, Michel January 2005 (has links) (PDF)
Thèse de doctorat : Génétique humaine : Paris 12 : 2005. / Titre provenant de l'écran-titre. Bibliogr. : 210 réf.
6

Study of abnormal inner ear development in Waardenburg-Shah syndrome using a Sox10-GEP mutant mouse model

Chu, Kit-hang, 朱傑亨 January 2011 (has links)
Sox10 is a high mobility group (HMG) domain transcription factor which is an important regulator for neural crest development. SOX10 mutations have been identified in Waardenburg-Shah syndrome type 4 (WS4) patients who suffer from sensorineural deafness. However, the mechanisms underlying the hearing defect of SOX10-mediated WS4 are unclear. The aim of this study is to elucidate the function of Sox10 during mouse inner ear development using a mutant mouse model, in order to reveal the underlying basis for SOX10 mutation associated sensorineural deafness in WS4 patients. The mammalian inner ear originates from the otic placode epithelium as well as neural crest cells (NCCs). To understand the role of Sox10 in inner development, I investigated the contribution of cranial NCCs to the cochleovestibular ganglion (CVG) by lineage tracing analysis, using Wnt1-cre;ZEG mice in which all NCCs were marked by GFP. Co-expression of GFP-positive cells with the glial marker BFABP suggested that glial cells in the CVG were derived from NCCs. Furthermore, Sox10-expressing NCCs were found to invade the CVG at 30-somite stage. These results suggest a role of Sox10 in regulating cranial NCCs contribution to CVG glia. In our laboratory we have generated a mouse mutant Sox10EGFP in which the Sox10 N-terminal domain was fused to the EGFP reporter. To investigate the function of Sox10 in NCCs invasion and gliogenesis of CVG, phenotypic analysis of Sox10NGFP mutant mouse were performed. EGFP expression in the CVG and inner ear epithelium of Sox10NGFP/+ embryos recapitulated the dynamic expression pattern of Sox10. Sox10NGFP/NGFP mutants displayed a reduced number of migrating NCCs and lacked NCCs or glia in their CVG. Moreover, loss of glial cell in the developing spiral ganglia of Sox10NGFP/NGFP mice led to disorganized fasciculation and degeneration of axonal filaments. These data suggest that Sox10 is required for maintaining the cranial NC stem cell pool, and is also essential for CVG gliogenesis and normal growth and innervation of spiral ganglion neurons. To study the function of Sox10 in regulating cochlear morphogenesis, morphological and histological analysis of mutant cochlear were performed. As illustrated by paint-filling analysis, Sox10NGFP/NGFP mice developed a shortened cochlear duct, reduced cochlear turning and enlarged endolymph lumen. Sensory hair cell patterning in the organ of Corti was normal in the Sox10 mutant as shown by immunohistochemistry analysis, suggesting that cochlear lumen enlargement was not due to disrupted planar cell polarity (PCP) pathway. To explore the molecular basis of Sox10-mediated cochlear morphogenic defect, expression of genes related to cochlear development were examined by qRT-PCR. Candidate genes included those involved in fluid homeostasis, which are known to affect the size of cochlear lumen. Up-regulated expression of Aquaporin 3, a water channel protein in the cochlear epithelium that facilitates water transport across the cell membrane, was observed in Sox10NGFP/NGFP cochlear. These results suggest that Sox10 may regulate cochlear morphogenesis by controlling endolymph homeostasis. In conclusion, Sox10 is required in multiple processes during inner ear development including NCC invasion, gliogenesis and cochlear morphogenesis, and their abnormal development can lead to sensorineural deafness in WS4 syndrome. / published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
7

Estudo genético e molecular da síndrome de Waardenburg / Genetic and molecular study of Waardenburg syndrome

Bocángel, Magnolia Astrid Pretell 27 June 2014 (has links)
A síndrome de Waardenburg é uma síndrome geneticamente heterogênea, com uma taxa de penetrância muito alta e expressividade extremamente variável. O objetivo desse estudo foi a caracterização molecular de uma amostra brasileira de pacientes com SW, dando continuidade ao estudo clínico feito em Pardono (2005), por meio do estudo de 48 probandos classificados com a síndrome de Waardenburg tipo 1 ou 2. Foram estudados os genes PAX3, MITF, SOX10, SNAI2, EDN3 e EDNRB, por meio do sequenciamento pelo método de Sanger, e investigadas as microdeleções e microduplicações dos genes PAX3, MITF e SOX10 pela técnica de MLPA (Multiplex Ligationdependent Probe Amplification). Dentre os resultados obtidos, identificou-se 17 mutações potencialmente patogênicas (35,4% dos probandos). Dessas, seis são variações de número de cópias (12,5% dos probandos). Além disso, foi realizado um levantamento na base de dados LOVD (Leiden Open Variation Database), no qual constam 105 mutações não sinônimas exônicas consideradas causativas da SW. Diversos algoritmos foram utilizados para avaliar a possível patogenicidade dessas mutações, os quais levam em conta as frequências das mutações na base de dados do projeto 1000 genomas e 6500 exomas, anotam as previsões dadas pelos programas Polyphen2, MutationTaster, LRT e SIFT e verificam a conservação em mamíferos e primatas. Por meio dessa análise, verificou-se que em 19 mutações desse tipo (18%) faltam evidências de sua patogenicidade, colocando-se em dúvida a sua relação com a síndrome de Waardenburg / Waardenburg syndrome (WS) is a genetically heterogeneous syndrome, with a very high penetrance rate and highly variable expressivity. The focus of this study was the molecular characterization of a Brazilian sample of patients with WS (48 probands classified with Waardenburg syndrome type 1 or 2). The analysis of genes PAX3, MITF, SOX10, SNAI2, EDN3 and EDNRB were performed by the Sanger sequencing method. Microduplications and microdeletions in genes PAX3, MITF and SOX10 were investigated by MLPA technique (Multiplex Ligationdependent Probe Amplification). We detected 17 mutations considered as potentially pathogenic in 17 probands of the sample (35,4 % of probands). Among these, six are copy number variations (12,5% of probands). In addition, we performed a survey using the database of LOVD (Leiden Open Variation Database), which contains 105 non-synonymous exonic mutations considered causative of WS. Several algorithms were used to evaluate the possible pathogenicity of these mutations, taking into account the frequency of mutations in the database project in 1000 genomes and 6500 exomes, and using programs : Polyphen2, MutationTaster, LRT and SIFT. These algorithms also verify the conservation of the variations in mammals and primates. Through this analysis, lack of evidence was found for the pathogenicity of 19 non-synonymous mutations (18%) and association of these with Waardenburg syndrome is questioned
8

Estudo genético e molecular da síndrome de Waardenburg / Genetic and molecular study of Waardenburg syndrome

Magnolia Astrid Pretell Bocángel 27 June 2014 (has links)
A síndrome de Waardenburg é uma síndrome geneticamente heterogênea, com uma taxa de penetrância muito alta e expressividade extremamente variável. O objetivo desse estudo foi a caracterização molecular de uma amostra brasileira de pacientes com SW, dando continuidade ao estudo clínico feito em Pardono (2005), por meio do estudo de 48 probandos classificados com a síndrome de Waardenburg tipo 1 ou 2. Foram estudados os genes PAX3, MITF, SOX10, SNAI2, EDN3 e EDNRB, por meio do sequenciamento pelo método de Sanger, e investigadas as microdeleções e microduplicações dos genes PAX3, MITF e SOX10 pela técnica de MLPA (Multiplex Ligationdependent Probe Amplification). Dentre os resultados obtidos, identificou-se 17 mutações potencialmente patogênicas (35,4% dos probandos). Dessas, seis são variações de número de cópias (12,5% dos probandos). Além disso, foi realizado um levantamento na base de dados LOVD (Leiden Open Variation Database), no qual constam 105 mutações não sinônimas exônicas consideradas causativas da SW. Diversos algoritmos foram utilizados para avaliar a possível patogenicidade dessas mutações, os quais levam em conta as frequências das mutações na base de dados do projeto 1000 genomas e 6500 exomas, anotam as previsões dadas pelos programas Polyphen2, MutationTaster, LRT e SIFT e verificam a conservação em mamíferos e primatas. Por meio dessa análise, verificou-se que em 19 mutações desse tipo (18%) faltam evidências de sua patogenicidade, colocando-se em dúvida a sua relação com a síndrome de Waardenburg / Waardenburg syndrome (WS) is a genetically heterogeneous syndrome, with a very high penetrance rate and highly variable expressivity. The focus of this study was the molecular characterization of a Brazilian sample of patients with WS (48 probands classified with Waardenburg syndrome type 1 or 2). The analysis of genes PAX3, MITF, SOX10, SNAI2, EDN3 and EDNRB were performed by the Sanger sequencing method. Microduplications and microdeletions in genes PAX3, MITF and SOX10 were investigated by MLPA technique (Multiplex Ligationdependent Probe Amplification). We detected 17 mutations considered as potentially pathogenic in 17 probands of the sample (35,4 % of probands). Among these, six are copy number variations (12,5% of probands). In addition, we performed a survey using the database of LOVD (Leiden Open Variation Database), which contains 105 non-synonymous exonic mutations considered causative of WS. Several algorithms were used to evaluate the possible pathogenicity of these mutations, taking into account the frequency of mutations in the database project in 1000 genomes and 6500 exomes, and using programs : Polyphen2, MutationTaster, LRT and SIFT. These algorithms also verify the conservation of the variations in mammals and primates. Through this analysis, lack of evidence was found for the pathogenicity of 19 non-synonymous mutations (18%) and association of these with Waardenburg syndrome is questioned
9

Genome-wide identification of Pax3 transcriptional targets during normal and pathological neural crest development / Identification à large échelle des gènes contrôlés par le facteur de transcription Pax3, durant le développement normal et pathologique de la crête neurale.

Alkobtawi, Mansour 18 October 2019 (has links)
La crête neurale est une population de cellules migratoires multipotentes qui se délaminent du tube neural et se différencient en plusieurs types cellulaires. Des altérations du réseau génique de régulation (GRN) de la CNengendrent des maladies congénitales, peu comprises. Cette thèse a pour but d’approfondir la compréhension du rôle de PAX3, un gène crucial dans le GRN de la CN, pendant le développement normal ou pathologique de la CN. Tout d’abord, nous avons caractérisé deux lignées transgéniques de X. laevis, Pax3:GFP etSox10:GFP qui permettent d’étudier l’induction et la spécification précoce de la CN ou sa migration, respectivement. Ensuite, en utilisant des analyses à large échelle, RNAseq et ChIPseq,nous avons défini le premier CN-GRN centré surPax3 chez X. laevis et avons notamment identifié quatre nouveaux gènes régulés par Pax3 :pcdh8l, ercc1 (directement) et fhl3, mmp14(indirectement). Des analyses par perte et gain de fonction de Pax3 in vivo ont permis de vérifier lapertinence de ces cibles.Puis, nous avons analysé le rôle des cibles, Fhl3,pendant le développement de la CN. Fhl3 s’est avéré être un stimulateur intracellulaire de la voie BMP qui, de manière contrôlée spatio-temporellement,est indispensable pour que les cellules cibles de BMP activent la production de WNT à un niveau suffisant pour le développement de la CN.Finalement, nous avons généré les premières lignées iPSC dérivées de patients atteints du syndrome de Waardenburg de type 1 qui ont un allèle de Pax3 muté et nous avons pu les différencier en CN. L’ensemble de ce travail apporte de nouveaux outils et de nouveaux gènes d’intérêt à étudier la CN tant chez X. laevis que chez l’humain. / The neural crest (NC) is a population of multipotent migratory cells that delaminate from the neural tube and differentiate into several cell types. Alterations in NC regulatory gene network (GRN) result in congenital diseases that are poorly understood. This thesis aims to better understand the role of Pax3, a crucial gene in NC GRN, during the normal orpathological NC development. First, we characterized two transgenic lines of X. laevis,Pax3:GFP and Sox10:GFP that allowed us to study the induction and early specification of NC or its migration, respectively. Then, using large scale analyzes, RNAseq and ChIPseq, we defined the first NC-GRN centered on Pax3 inX. laevis and identified in particular four new genes regulated by Pax3 : pcdh8l, ercc1(directly) and fhl3, mmp14 (indirectly). The relevance of these targets was verified by Pax3loss- and gain-of-function in vivo.Then, we analyzed the role of one target, Fhl3,during NC development. We have shown thatFhl3 is an intracellular stimulator of the BMP pathway, which, in a spatiotemporally controlled manner, is essential for BMP target cells to activate the production of WNT at a sufficient level for the development of NC.Finally, we generated the first iPSC lines derived from Waardenburg syndrome type 1patients with a heterozygous Pax3 loss-of function mutation and we were able to differentiate them into NC. All of this work brings new tools and new genes of interest to study NC in both X. laevis and humans.
10

Fonction et interaction entre plusieurs gènes impliqués dans les syndromes de Waardenburg et de Mowat-Wilson

Stanchina, Laure 05 November 2009 (has links)
Les cellules de la crête neurale se caractérisent par leur capacité de migration dansl’embryon et la variété des types cellulaires qu’elles sont capables de générer (mélanocytes,système nerveux entérique (SNE) et périphérique). Chez l’homme, plusieurs maladiescongénitales affectant des organes et tissus divers, ont pour origine une anomalie demigration, prolifération, survie ou différenciation de ces cellules. Au laboratoire, nousétudions deux d’entre elles, le syndrome de Waardenburg-Hirschsprung (WS4- anomalie depigmentation, surdité et maladie de Hirschsprung (HSCR : anomalie entérique)) et lesyndrome de Mowat et Wilson (MWS – retard mental sévère, dysmorphie faciale avec ousans HSCR). A l’heure actuelle, quatre gènes ont été impliqués : l’endothéline 3 (EDN3) etson récepteur à sept domaines transmembranaires EDNRB et les deux facteurs de transcriptionZEB2 et SOX10. Au cours de ma thèse, nous avons montré que des délétions de SOX10 sontégalement responsables de 15% des cas de WS2 (défauts de pigmentation et surdité sansHSCR), élargissant le spectre des phénotypes liés à une mutation au sein de ce gène(Bondurand, Dastot-Le Moal, Stanchina et al. Am. J Hum. Genet, 2007).Parallèlement à ces études génétiques, nous avons souhaité mieux définir la fonction et lesinteractions entre les différents gènes impliqués dans le WS4 (SOX10, EDN3 et EDNRB).Pour cela, nous avons croisé les modèles murins invalidés pour ces gènes, et comparé lephénotype des simples et doubles mutants. A travers cette analyse phénotypique, nous avonsdémontré qu’une interaction entre ces molécules est nécessaire au développement normal duSNE et des mélanocytes dérivés de la crête neurale. En effet, par rapport aux simples mutants,les doubles mutants Sox10;Edn3 et Sox10;Ednrb présentent une augmentation de ladépigmentation, et une forte aggravation du phénotype entérique. Le suivi du devenir descellules formant le SNE au cours du développement nous a permis de montrer quel’aggravation du phénotype entérique est due à une diminution du pool de cellulesprogénitrices par apoptose (Stanchina et al. 2006).Dans la continuité des travaux déjà réalisés, nous avons voulu améliorer notrecompréhension du rôle joué par le gène du MWS : ZEB2, et étudier ses interactions avec lesgènes du WS4. Dans un premier temps, nous avons analysé l’effet de l’expression constitutiveou l’inhibition de ce facteur sur la survie, prolifération et différenciation des cellulesprogénitrices du SNE à l’aide d’un système de culture de progéniteurs entériques disponibleau laboratoire. Nos résultats suggèrent un effet répresseur de ZEB2 sur la différenciationneuronale. Ce facteur pourrait donc être nécessaire au maintien du pool de cellulesprogénitrices dans un état indifférencié. Nous avons ensuite étudié les interactions entre ZEB2et les gènes du WS4. Nous avons croisé les souris portant une invalidation du gène ZEB2 avecles souris invalidées pour SOX10 ou portant une mutation de EDN3 ou EDNRB, et démontréqu’une interaction entre ZEB2 et SOX10 est nécessaire au développement normal du SNE. Eneffet, par rapport aux simples mutants, les doubles mutants présentent une forte aggravationdu phénotype entérique, due à une diminution de la prolifération des cellules progénitrices et àune augmentation de la différenciation neuronale. L’analyse phénotype des mutantsZeb2;Edn3 et Zeb2;Ednrb suggère également l’existence d’une interaction entre ces troismolécules, mais l’origine du défaut entérique reste inexplorée.Ces études nous ont permis de mieux appréhender les réseaux moléculaires mis en place aucours du développement du SNE, de comprendre l’origine des anomalies entériques observéeschez les patients, améliorant leur prise en charge. / To understand in more details the molecular and cellular bases of hereditary diseases resulting from defects of neural crest (NC) development, we study several neurocristopathies, in particular Waardenburg syndrome (WS – pigmentary abnormalities and hearing loss), and Mowat-Wilson syndrome (MWS, severe mental retardation, facial dysmorphy, with or without HSCR (congenital megacolon)). To date, about ten causative genes have been identified, among which are the seven transmembrane domain receptor EDNRB and its ligand endothelin 3 (EDN3), the two transcription factors SOX10 and ZEB2.We contributed to the research efforts engaged to unravel these disorders. In particular, we identified the first mutations of SOX10 in patients presenting with WS4 (association of WS with HSCR disease) and WS2 (Bondurand, Dastot-Le Moal, Stanchina et al. Am. J Hum. Genet, 2007), and participated to functional studies describing its role during enteric nervous system (ENS) development. More recently, we identified the gene ZEB2 as responsible for MWS. The goal of my thesis was to understand the function of these genes and their interaction during the development of NC and ENS in particular. For this purpose, we combined an in vitro approach (isolation of ENS progenitors) to in vivo experiments (phenotype analysis of simple and double mutant mice). We demonstrated that an interaction between SOX10, EDN3 and EDNRB is necessary for the normal development of the ENS and melanocytes (Stanchina et al. 2006), and then focused our efforts in understanding the function of ZEB2 during the development of the ENS as well as its interactions with WS4 genes. Preliminary results suggest that ZEB2 inhibition accelerates neuronal differentiation in vitro. In the same time, generation of Zeb2;Sox10, Zeb2;Edn3 and Zeb2;Ednrb have been realized. Through phenotype analysis of Sox10;Zeb2 double mutants, we showed that a coordinated and balanced interaction between these two genes is required for normal ENS development. Indeed, double mutants present with more severe ENS defects due to decreased proliferation of enteric progenitors and increased neuronal differentiation from E11.5 onwards. These data revealed that crosstalks between these two transcription factors are crucial for proper ENS development. Analysis of Zeb2;Edn3 and Zeb2;Ednrb double mutant suggest also an interaction between these genes. Future experiments will help us to confirm these results and to determine the cellular and molecular origin of these interactions. These studies will enable us to better apprehend the molecular bases of these diseases, and to understand the origin of the enteric anomalies observed in patients. This knowledge may also help to develop new therapeutic strategies

Page generated in 0.0263 seconds