• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 54
  • 47
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 519
  • 519
  • 519
  • 147
  • 99
  • 86
  • 56
  • 45
  • 44
  • 41
  • 39
  • 36
  • 35
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Strategies for estimating atmospheric water vapour using ground-based GPS receivers in Australia

Agustan, January 2004 (has links)
The Global Positioning System (GPS) of navigation satellites was first developed for global navigation and position determination purposes. Signals from satellites are delayed by the Earths neutral atmosphere on propagating to ground-based receivers, termed the tropospheric delay. Although an unwanted term for precise positioning, the tropospheric delay may be converted to atmospheric water vapour, which is a vital parameter for weather forecasting.This research investigates the optimum GPS processing strategy to estimate atmospheric water vapour derived from ground-based GPS receivers particularly in the Australian region. For this purpose, GPS data observations from GPS permanent stations across Australia, mainly from the Australian Regional GPS Network, will be processed using scientific GPS software in post-processed mode and near real-time mode.This research shows that by applying high accuracy GPS data processing, the tropospheric delay could be estimated precisely. The quality of GPS data processing is indicated by the station coordinates repeatability since the coordinates can gauge at least a coarse assessment of the ability of the processing method to estimate the tropospheric delay.The precipitable water can be estimated from the wet component after separating the tropospheric delay into dry and wet components. High accuracy GPS data processing is dependent on the best choice of processing strategies, and the correct application of error-correction models and a priori constraints. This research finds that the GPS- PW estimation agrees with Radiosonde-PW estimation with an average of standard deviation at 2.5mm level for post-processed strategy and 2.8mm for near real-time strategy. The standard deviation of tropospheric parameter estimates is 1.1mm for post-processed strategy and 1.5mm for near real-time strategy.
162

GPS heighting : the effect of the GPS antenna phase center variation on height determination

Johnston, Gary Michael, n/a January 2000 (has links)
This thesis examines the effect on height determination of the antenna phase centre variation of GPS user segment antennae. A discussion of the various antenna types in common use is followed by an explanation of the problem at hand. In particular the effect of the antenna's environment on the phase centre variation is covered more fully, since the phase variation phenomenon itself is largely unexplained in the engineering community to date. A number of examples of the heighting errors caused by this phenomenon are presented, followed by specifically designed experiments, which quantify the effect. Finally the phase centre variation itself is modelled for a particular GPS antenna in common use by surveyors in Australia. The overall conclusion, arrived at by demonstration, is that the antenna phase centre offsets and the variation model are very important for high accuracy determinations of height.
163

Gras development, approval and implementation in Australia

Ely, William Stewart, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2006 (has links)
This Thesis covers the development of an alternative Global Navigation Satellite System (GNSS) augmentation technology that has become known as the Ground-based Regional Augmentation System (GRAS). GNSS augmentation technologies in support of aviation have largely been developed by countries with large economies such as the USA and members of the European Union. These technologies have focussed on solutions to the specific problems of the host nations, based on the demographics, political and economic factors relevant to them. Outside these countries, the role of GNSS augmentation has largely been ignored, specifically when considering wide area augmentation utilising Satellite Based Augmentation Systems (SBAS). SBAS technologies are expensive, and cannot be justified for nations like Australia with a relatively small number of aircraft, operated in a focussed geographic area. Utilising SBAS services provided by another country introduces cultural, legal and institutional issues that are not always easily addressed. GRAS was derived to provide a cost-effective wide area augmentation capability to nations that lacked the economic ability to field SBAS technologies. This work covers the evolution of the GRAS concept, the construction and testing of the GRAS test bed and its associated test avionics, as well as the development of standards needed to support GRAS as an internationally accepted aviation standard. The major outcome from this work was the confirmation that GRAS could meet the Required Navigation Performance (RNP) standards for Approaches with Vertical Guidance Level 2 (APV-II) as well as all less demanding modes of flight. Results from numerous ground and flight tests conducted under this research program have been reviewed by the International Civil Aviation Organisation (ICAO) GNSS Panel (GNSSP), and been instrumental in the development and validation of Standards and Recommended Practices (SARPs) which promulgate how ICAO standardised systems should perform. The final component of this work describes the project management and technology approval processes needed to get an internationally standardised system into operational use, and the particular problems that a small country like Australia has in progressing these tasks on the World stage.
164

GPS : Nätverks-RTK eller RTK med Fast referensstation i Vänersborgs kommun

Bjarneskär, Anneli, Eriksson, Eva January 2003 (has links)
No description available.
165

Near real-time precise orbit determination of low earth orbit satellites using an optimal GPS triple-differencing technique

Bae, Tae-Suk, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 174-186).
166

Least-squares variance component estimation : theory and GPS applications /

Amiri-Simkooei, AliReza, January 2007 (has links)
Originally presented as the author's thesis (doctoral)--Delft University of Technology. / Includes bibliographical references (p. [185]-194) and index.
167

GPS : Nätverks-RTK eller RTK med Fast referensstation i Vänersborgs kommun

Bjarneskär, Anneli, Eriksson, Eva January 2003 (has links)
No description available.
168

Robust spacecraft attitude determination using global positioning system receivers

Madsen, Jared Dale 11 July 2011 (has links)
Not available / text
169

GPS technology to study crustal motions in the Philippine region /

Silcock, David Martin. Unknown Date (has links)
Thesis (PhD)--University of South Australia, 2002.
170

Gras development, approval and implementation in Australia

Ely, William Stewart, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2006 (has links)
This Thesis covers the development of an alternative Global Navigation Satellite System (GNSS) augmentation technology that has become known as the Ground-based Regional Augmentation System (GRAS). GNSS augmentation technologies in support of aviation have largely been developed by countries with large economies such as the USA and members of the European Union. These technologies have focussed on solutions to the specific problems of the host nations, based on the demographics, political and economic factors relevant to them. Outside these countries, the role of GNSS augmentation has largely been ignored, specifically when considering wide area augmentation utilising Satellite Based Augmentation Systems (SBAS). SBAS technologies are expensive, and cannot be justified for nations like Australia with a relatively small number of aircraft, operated in a focussed geographic area. Utilising SBAS services provided by another country introduces cultural, legal and institutional issues that are not always easily addressed. GRAS was derived to provide a cost-effective wide area augmentation capability to nations that lacked the economic ability to field SBAS technologies. This work covers the evolution of the GRAS concept, the construction and testing of the GRAS test bed and its associated test avionics, as well as the development of standards needed to support GRAS as an internationally accepted aviation standard. The major outcome from this work was the confirmation that GRAS could meet the Required Navigation Performance (RNP) standards for Approaches with Vertical Guidance Level 2 (APV-II) as well as all less demanding modes of flight. Results from numerous ground and flight tests conducted under this research program have been reviewed by the International Civil Aviation Organisation (ICAO) GNSS Panel (GNSSP), and been instrumental in the development and validation of Standards and Recommended Practices (SARPs) which promulgate how ICAO standardised systems should perform. The final component of this work describes the project management and technology approval processes needed to get an internationally standardised system into operational use, and the particular problems that a small country like Australia has in progressing these tasks on the World stage.

Page generated in 0.1086 seconds