Spelling suggestions: "subject:"blobal navigation satellite system"" "subject:"clobal navigation satellite system""
1 |
Optimisation of MF DGNSS, maritime and aeronautical radiobeacon coverage by frequency re-assignmentTurhan, Birol Erdem January 1999 (has links)
No description available.
|
2 |
Determinação de um modelo geoidal local para o Distrito FederalSilva, Denis Vinicius Ricardo da 17 July 2017 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação em Geociências Aplicadas, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-11-20T16:13:23Z
No. of bitstreams: 1
2017_DenisViniciusRicardodaSilva.pdf: 3726942 bytes, checksum: 9a7076dc55d9f42c5868d0539bdb17ec (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-01-04T21:46:28Z (GMT) No. of bitstreams: 1
2017_DenisViniciusRicardodaSilva.pdf: 3726942 bytes, checksum: 9a7076dc55d9f42c5868d0539bdb17ec (MD5) / Made available in DSpace on 2018-01-04T21:46:28Z (GMT). No. of bitstreams: 1
2017_DenisViniciusRicardodaSilva.pdf: 3726942 bytes, checksum: 9a7076dc55d9f42c5868d0539bdb17ec (MD5)
Previous issue date: 2018-01-04 / O modelo geoidal é parte fundamental na transformação entre as altitudes ortométricas e geométricas. Existem aspectos positivos na sua utilização quando comparados a métodos clássicos de levantamento. O surgimento das técnicas de posicionamento por GNSS (Global Navigation Satellite System) impulsionou de maneira significativa diversas linhas de pesquisa, na busca de um modelo geoidal cada vez mais preciso. A disponibilidade de dados altimétricos, gravimetria terrestre e orbital também contribuíram neste sentido. Deste então, várias abordagens para a obtenção de um modelo geoidal tem sido apresentadas. Atualmente a integração de diferentes métodos se mostra uma alternativa promissora para o cálculo do geoide. Neste contexto, o emprego da técnica Remove-Calcula-Restaura (RCR) tem demonstrado resultados importantes no Brasil e em outras partes do mundo. A base de todas as formulações da técnica RCR envolve métodos gravimétrico e orbital, por isto, utiliza Modelos Digitais de Terreno (MDT), dados gravimétricos terrestres, Modelos do Geopotencial Global (MGG) e valor de densidade para o cálculo de modelos geoidais. Neste trabalho é apresentado um levantamento das diferentes formulações utilizadas no processo de redução gravimétrica. Também uma análise das principais variáveis que possam influenciar no cálculo das anomalias gravimétricas e na elaboração de modelos geoidais, a partir da técnica RCR. Para o cálculo, utilizou-se um pacote denominado GRAVTool, baseado no software MATLAB®. No final da pesquisa, tem-se também, como marco, a determinação de um modelo geoidal local para o Distrito Federal. / The geoidal model is a fundamental part of the transformation between orthometric and geometric heights. There are positive aspects in its use when compared to classical survey methods. The emergence of GNSS (Global Navigation Satellite System) positioning techniques has significantly boosted several lines of research in the search for an increasingly accurate geoidal model. The availability of altimetric data, terrestrial and orbital gravimetry also contributed in this sense. From this, several approaches to obtaining a geoid model have been presented. Currently the integration of different methods shows a promising alternative for the calculation of the geoid. In this context, the use of the Remove-Compute-Restore technique (RCR) has shown important results in Brazil and in other parts of the world. The basis of all RCR technique formulations is derived from gravimetric and orbital methods, using Digital Terrain Models (DTM), terrestrial gravimetric data, Global Geopotential Models (GGM) and density value for the calculation of geoid models. This work presents a revision of the different formulations used in the gravimetric reduction process. Also an analysis of the main variables that can influence the calculation of the gravimetric anomalies and the elaboration of geoid models from the RCR technique. For the calculation, a package called GRAVTool, based on the MATLAB® software, is used. At the end of the research, we also have as a landmark, the determination of a local geoidal model for the Brazilian Federal District.
|
3 |
Performance analysis of assisted-GNSS receiversCouronneau, Nicolas January 2013 (has links)
The goal of this thesis is to improve the understanding of the performance of Global Navigation Satellite System (GNSS) receivers that use assistance data provided by cellular networks. A typical example of such a receiver is a mobile phone including a Global Positioning System (GPS) receiver. Using assistance data such as an accurate estimate of the GPS system time is known to improve the availability and the time-tofirst- fix performance of a GNSS receiver. However, the performance depends on the architecture of the cellular network and may vary significantly across networks. This thesis presents three new contributions to the performance analysis of assisted-GNSS receivers in cellular networks. I first introduce a mathematical framework that can be used to calculate a theoretical lower bound of the time-to-first-fix (TTFF) in an assisted-GNSS receiver. Existing methods, for example the flow-graph method, generally focus on calculating the theoretical mean acquisition time of a pseudo-noise signal for one satellite only. I extend these methods to calculate the full probability distribution of the joint acquisition of several satellites, as well as the sequential acquisition of satellites, which is commonly performed in assisted receivers. The method is applied to real measurements made in a multipath fading channel. I next consider time assistance in unsynchronised cellular networks. It is often argued that unsynchronised networks can not provide fine-time aiding since they do not have a common clock, although few experimental results have been reported in the existing literature. I carried out experiments on a GSM network, a second-generation cellular network, in Cambridge, UK, in order to measure the time stability of the synchronisation signals. The results showed a large variability in the time stabilities across different base stations and I evaluated the performance of an ensemble filter that combines the measurements into a single, more accurate, estimate of the universal time. The main contribution is to show that the performance of such a filter is adequate to provide fine-time assistance to a satellite navigation receiver. Finally, I address the positioning performance of an assisted receiver in synchronised cellular networks. Cellular positioning has been often investigated in the literature, but few results on real networks have been presented. Many positioning methods are proprietary and little information about their performance in real networks haven been published publicly. A CDMA2000 cellular network in Calgary, Canada, was used to collect experimental data. The time stability and the synchronisation of the CDMA2000 pilot signals were excellent and were used to evaluate the performance of CDMA2000-based cellular positioning system. I then developed a method to combine the pseudo-range measurements from the GPS signals and the CDMA2000 base stations. I evaluated the performance of positioning in both outdoor and indoor environments, and I analysed the effects and the possible mitigation of non-line-of-sight signals. The main contribution is to show that additional satellite navigation signals can improve the accuracy of cellular positioning beyond what is theoretically expected from the improvement in the geometry.
|
4 |
Analysis of integrity monitoring for the local area augmentation system using the global navigation satellite systemLiu, Fan January 1998 (has links)
No description available.
|
5 |
Calculations for positioning with the Global Navigation Satellite SystemCheng, Chao-heh January 1998 (has links)
No description available.
|
6 |
Absolute geopotential height system for EthiopiaBedada, Tullu Besha January 2010 (has links)
This study used airborne gravity data, the 2008 Earth Gravity Model (EGM08) and Shuttle Radar Topographic Mission (SRTM) digital elevation data in a ‘Remove-Compute-Restore’ process to determine absolute vertical reference system for Ethiopia. This gives a geopotential height at any isolated field point where there is a Global Navigation Satellite System (GNSS) measurement without reference to a vertical network or a regional datum point. Previously, height was determined conventionally by connecting the desired field point physically to a nearby bench mark of a vertical network using co-located measurements of gravity and spirit levelling. With the use of precise GNSS positioning and a gravity model this method becomes obsolesce. The new approach uses the ‘Remove-Restore’ process to eliminate longer to shorter wavelengths from the measured gravity data using EGM08 and geometrical and condensed gravity models of the SRTM data. This provides small, smooth and localised residuals so that the interpolation and integration involved is reliable and the Stokes-like integral can be legitimately restricted to a spherical cap. A very fast, stable and accurate computational algorithm has been formulated by combining ‘hedgehog’ and ‘multipoint’ models in order to make tractable an unavoidably huge computational task required to remove the effects of about 1.5 billion! SRTM topographic mass elements representing Ethiopia and its immediate surroundings at 92433 point airborne gravity observations. The compute stage first uses an iterative Fast Fourier Transform (FFT) to predict residual gravity at aircraft height as a regular grid on to the surface of the ellipsoidal Earth and then it used a Fourier operation equivalent to Stokes’ integral to transform the localised gravity disturbance to residual potential. The restore process determines the geopotential number on or above the Earth’s surface where practitioners need it by restoring the potential effects of the removed masses. The accuracy of the geopotential number computed from gravity and topography was evaluated by comparing it with the one derived directly from EGM08 and precise geodetic levelling. The new model is in a good agreement across 100 km baseline with a standard deviation of 56 10−2 2 −2 × m s and 39 10−2 2 −2 × m s relative to EGM08 and levelling, respectively ( 10−2 2 −2 m s is approximately equivalent to 1mm of height). The new method provides an absolute geopotential height of a point on or above the Earth’s surface in a global sense by interpolating from geopotential models prepared as the digital grids carried in a chip for use with the GNSS receiver in the field.
|
7 |
Investigações preliminares sobre a influência do clima espacial no posicionamento relativo com GNSSDal Poz, William Rodrigo [UNESP] 03 November 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-11-03Bitstream added on 2014-06-13T19:00:44Z : No. of bitstreams: 1
dalpoz_wr_dr_prud.pdf: 7310354 bytes, checksum: 0dad0c578066121061e36552e4e9f136 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O erro devido à ionosfera nas observáveis GNSS (Global Navigation Satellite System) é diretamente proporcional à densidade de elétrons presente na ionosfera e inversamente proporcional a frequência do sinal. Da mesma forma que no posicionamento por ponto, os resultados obtidos no posicionamento relativo são afetados pelo efeito sistemático da ionosfera, que é uma das maiores fontes de erro no posicionamento com GNSS. Mesmo considerando que parte dos erros devido à ionosfera é cancelada na dupla diferenciação, a ionosfera pode causar fortes impactos no posicionamento relativo. O problema principal neste método de posicionamento é a variação espacial na densidade de elétrons, que pode ocorrer em função de vários fatores, tais como hora local, variação sazonal, localização do usuário, ciclo solar e atividade geomagnética. Dependendo das condições do clima espacial, que é controlado pelo Sol, a atividade geomagnética pode ser alterada de forma significativa, dando origem a uma tempestade geomagnética. Nesta pesquisa foram avaliados os efeitos da ionosfera no posicionamento relativo, com observações GNSS da fase da onda portadora (L1), nas regiões ionosféricas de latitude média e alta e na região equatorial. Nas duas primeiras regiões foram analisados os efeitos da ionosfera em períodos de irregularidades, decorrentes de tempestades geomagnéticas. Na região equatorial, que engloba o Brasil, foram analisados os efeitos da ionosfera em função da variação diária e sazonal. No processamento dos dados GNSS foi utilizado o GPSeq, que processa os dados na forma recursiva e fornece os Resíduos Preditos da Dupla Diferença da Fase (RPDDF)... / The error caused by ionosphere on GNSS (Global Navigation Satellite System) is directly proportional to the density of electrons from ionosphere and inversely proportional to the frequency squared of the signal GNSS. As in the case of point positioning, results in relative positioning are affected by systematic effect from ionosphere, which is one of major error sources in the GNSS positioning. Although some errors caused by ionosphere are canceled in double difference, strong impacts may be caused by ionosphere on the relative positioning. In this positioning the main problem is the spatial variation in electron density that can occur due local time, seasonal variation, user location, solar cycle, geomagnetic activity, etc. Depending on the conditions of space weather, in which is controlled by the Sun, the geomagnetic activity can be changed inducing geomagnetic storms. In this research the effects from ionosphere has been evaluated in GNSS relative positioning using L1 carrier phase observations, at the three regions of the ionosphere: middle and high latitudes and equatorial region. In regions of middle and high latitudes have been analyzed the effects from ionosphere in irregularities periods, caused by geomagnetic storms. In the equatorial region, including Brazil, have been analyzed the effects from ionosphere according daily and seasonal variation. In the processing GNSS data has been used GPSeq software. This software processes the data in a recursive form and provides the Predicted Residual of Carrier Phase Double Difference (PRCPDD) ... (Complete abstract click electronic access below)
|
8 |
Implementation and optimization of a Global Navigation Satellite System software radioBhanot, Sunil January 1998 (has links)
No description available.
|
9 |
Investigating the effect of the DGNSS SCAT-I data link on VOR signal receptionLi, Jian January 1996 (has links)
No description available.
|
10 |
Investigações preliminares sobre a influência do clima espacial no posicionamento relativo com GNSS /Dal Poz, William Rodrigo. January 2010 (has links)
Orientador: Paulo de Oliveira Camargo / Banca: João Francisco Galera Monico / Banca: Edvaldo Simões da Fonseca Junior / Banca: Cláudia Pereira Krueger / Banca: Moisés Ferreira Costa / Resumo: O erro devido à ionosfera nas observáveis GNSS (Global Navigation Satellite System) é diretamente proporcional à densidade de elétrons presente na ionosfera e inversamente proporcional a frequência do sinal. Da mesma forma que no posicionamento por ponto, os resultados obtidos no posicionamento relativo são afetados pelo efeito sistemático da ionosfera, que é uma das maiores fontes de erro no posicionamento com GNSS. Mesmo considerando que parte dos erros devido à ionosfera é cancelada na dupla diferenciação, a ionosfera pode causar fortes impactos no posicionamento relativo. O problema principal neste método de posicionamento é a variação espacial na densidade de elétrons, que pode ocorrer em função de vários fatores, tais como hora local, variação sazonal, localização do usuário, ciclo solar e atividade geomagnética. Dependendo das condições do clima espacial, que é controlado pelo Sol, a atividade geomagnética pode ser alterada de forma significativa, dando origem a uma tempestade geomagnética. Nesta pesquisa foram avaliados os efeitos da ionosfera no posicionamento relativo, com observações GNSS da fase da onda portadora (L1), nas regiões ionosféricas de latitude média e alta e na região equatorial. Nas duas primeiras regiões foram analisados os efeitos da ionosfera em períodos de irregularidades, decorrentes de tempestades geomagnéticas. Na região equatorial, que engloba o Brasil, foram analisados os efeitos da ionosfera em função da variação diária e sazonal. No processamento dos dados GNSS foi utilizado o GPSeq, que processa os dados na forma recursiva e fornece os Resíduos Preditos da Dupla Diferença da Fase (RPDDF) ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The error caused by ionosphere on GNSS (Global Navigation Satellite System) is directly proportional to the density of electrons from ionosphere and inversely proportional to the frequency squared of the signal GNSS. As in the case of point positioning, results in relative positioning are affected by systematic effect from ionosphere, which is one of major error sources in the GNSS positioning. Although some errors caused by ionosphere are canceled in double difference, strong impacts may be caused by ionosphere on the relative positioning. In this positioning the main problem is the spatial variation in electron density that can occur due local time, seasonal variation, user location, solar cycle, geomagnetic activity, etc. Depending on the conditions of space weather, in which is controlled by the Sun, the geomagnetic activity can be changed inducing geomagnetic storms. In this research the effects from ionosphere has been evaluated in GNSS relative positioning using L1 carrier phase observations, at the three regions of the ionosphere: middle and high latitudes and equatorial region. In regions of middle and high latitudes have been analyzed the effects from ionosphere in irregularities periods, caused by geomagnetic storms. In the equatorial region, including Brazil, have been analyzed the effects from ionosphere according daily and seasonal variation. In the processing GNSS data has been used GPSeq software. This software processes the data in a recursive form and provides the Predicted Residual of Carrier Phase Double Difference (PRCPDD) ... (Complete abstract click electronic access below) / Doutor
|
Page generated in 0.1266 seconds